Все лекции по биологии. Учебное пособие для студентов I курса, обучающихся по специальностям лечебное дело и медикодиагностическое дело

Биология

Государственное образовательное учреждение высшего профессионального образования

«Рязанский государственный медицинский университет им.акад. И.П.Павлова

Федерального агентства по здравоохранению и социальному развитию»

Кафедра гистологии и биологии

Калыгина Т.А. Брызгалина Л.И. Шутов В.И.

Биология

Успех в области экологической устойчивости потребует применения молекулярной биологии к микробной экологии и использования генетически модифицированных микроорганизмов. Кроме того, для этого потребуется междисциплинарный подход с интерфейсом между микробиологией, биогеохимией, водной и органической химией, гидрогеологией и физикой почвы. Таким образом, этот курс также предоставит учащимся введение в молекулярно-биологические методы и то, как они относятся к экологической микробиологии и взаимодействию с этими другими дисциплинами.

курс лекций для студентов, обучающихся на русском языке

Рецензенты: Ендолов В.В., профессор, зав. кафедрой анатомии, физиологии и гигиены человека Рязанского государственного университета им. С.Есенина Дармограй В.Н., профессор, зав. кафедрой

фармакогнозии с курсом ботаники.

© Т.А.Калыгина, Л.И.Брызгалина, Шутов В.И.

Этот курс представляет собой комплексное междисциплинарное обсуждение структуры и функции лесных экосистем с особой ссылкой на леса Британской Колумбии и Канады. Темы, которые будут затронуты, будут включать следующее: концепция экосистемных исследований; глобальные и местные различия в типе леса; классификация лесных экосистем; процессы, контролирующие структуру и функцию экосистемы; нарушения, последовательность и экосистемные функции бореальных лесов; и компьютерное моделирование в исследованиях экосистем.

Этот курс предназначен для изучения клеточных и молекулярных участников иммунного ответа. Также будет обсуждаться взаимосвязь между иммунными механизмами и медицинскими проблемами, такими как аллергия, аутоиммунитет, иммунодефицит, инфекция и трансплантация органов.

© ГОУ ВПО Ряз. ГМУ.2008

Современная биология, являясь фундаментальной дисциплиной, играет первостепенную роль в профессиональной подготовке различных специалистов, в том числе и врачей.

В области медицинского образования широкая биологическая подготовка студентов необходима для получения ими фундаментальных знаний в области биологии и медицины, ориентирована на человека и отвечает запросам практической медицины.

Этот курс дополнительно развивает методы исследования и методологию судебной биологии. Темы дальнейшего изучения будут включать исследование и методы обработки и интерпретации останков людей. Студенты будут использовать биологические и физические особенности окружающей среды для интерпретации останков, извлеченных из захороненных, рассеянных, подводных и поджогов. В передовых исследованиях будет изучаться остеология среди несовершеннолетних и развитие. Студенты должны иметь текущий столбняк и стальные сапоги.

Традиционные экологические знания

Предпосылки: 45 кредитов на уровне университетов. Студенты биологии могут связаться с инструктором для получения разрешения на регистрацию. В этом курсе рассматриваются коренные подходы к ботанике, зоологии и экологии. Возможные темы включают классификацию, традиционные экологические знания, сбор урожая, управление природными ресурсами, уход за животными и отношения к другим аспектам жизни коренных народов, культуры и земельных претензий. Особое внимание уделяется традиционным знаниям Северо-западного побережья.

Главная цель данной работы – формирование целостного представления об основах биологии с учѐтом современных достижений этой быстро развивающейся отрасли науки и оказание помощи студентам - иностранцам 1 курса в усвоении теоретических знаний для достижения ими нужного уровня в познании учебного материала.

Материал данного курса лекций излагается в традиционной последовательности в соответствии с положением о теории биологических систем и представлениями об уровнях организации живой природы. Разбит материал на 16 тем и включает цитологию, молекулярную биологию, размножение и развитие организмов, общую и медицинскую генетику, теорию эволюции и антропогенез.

Этот курс включает в себя групповые поездки. Этот курс позволяет учащимся в биологии участвовать в семинарах на основе текущих тем в биологии. Этот курс потребуется студентам в программе «Почетности», но открыт для всех студентов, которые отвечают предварительным требованиям. Студентам, зарегистрированным в программе «Почетные права», будет предоставлена ​​приоритетная регистрация.

Предпосылки: любые три курса по биологии, число которых составило 200 или выше, и разрешение преподавателя. Этот курс позволяет учащимся Биологии участвовать в независимых исследованиях, основанных на текущих темах в биологии. Студенты получат возможность для углубленного изучения специализированной области биологии под руководством эксперта в этой области. Студенты должны проконсультироваться с отделом биологии, чтобы определить доступность курса и область содержимого конкретного семестра. Для каждой темы будут использоваться разные буквы, и учащиеся могут повторить курс для получения кредита, если тема отличается.

Изложен основной теоретический материал, изучаемый на первом курсе иностранными студентами специальности «лечебное дело», «стоматология», «фармация».

Введение в науку биология

1.Предмет биологии. Классификация биологических наук.

2.Методы изучения (исследования) биологии.

3.Основные свойства живых существ. Определение понятия «жизнь».

Направленные исследования в области биологии

Предварительное условие: Зачисление в программу биологии дипломной степени и завершение по меньшей мере 10 кредитов биологии высшего уровня. Студенты будут проводить исследовательский проект под наблюдением преподавателя или утвержденного внеклассного руководителя. Результаты исследования будут написаны как тезис и представлены как в устной, так и в постерной форме. Студенты должны будут представить свои исследования на соответствующем студенческом исследовательском форуме.

Вы всегда должны носить его в лаборатории, даже в клинической секции, во всех лабораториях и семинарах. После окончания лекции вам будет объявлена ​​классификация подгрупп. Они не могут быть предоставлены клиниками. Предоставляются халаты врача. Приведение в курс: чехол и удостоверенный идентификатор студента, стетоскоп.

  • Выполняется электронная проверка.
  • Значки имен и тестовые карты.
  • Вы получите поля для подтверждения вашего идентификатора студента.
Студенты человеческой медицины должны иметь возможность.

4.Уровни организации живого.

Предмет биологии. Классификация биологических наук

Термин «биология» образуется из двух греческих слов (bios – жизнь и logos – учение).

Термин был введен в 1802 году двумя естествоиспытателями – Ж.Б.Ламарком и Г.Р.Тревиранусом, независимо друг от друга.

Биология изучает общие закономерности, характерные для всего живого и раскрывающие сущность жизни, ее формы и развитие.

Сюда входят темы, предлагаемые институтами и клиниками в текущем семестре. Соответствующий лектор решает, в какой форме выборный субъект будет рассмотрен. Регистрация экзамена для необязательных обязательных предметов также находится в моем кампусе. Зимний сезон. . Особенно, как мотивированный новичок, вы часто очень нервничаете по поводу требований своих исследований до начала учебы. Вот почему у нас есть какая-то информация для вас, что может немного поверить вам.

Медицина - это курс с очень низким уровнем абортов. Это связано с тем, что препятствие, допущенное к учебе, относительно велико, и экзамены, когда они подготовлены, могут быть выполнены хорошо. В принципе у вас есть четыре попытки для каждого экзамена. Тем не менее, более 90% всех студентов уже имеют экзамены не позднее первого репетиционного курса. Между экспериментами есть несколько месяцев, поэтому у вас достаточно времени для подготовки к репетиции. Так что нет причин беспокоиться!

Биология – комплексная наука. Разделы науки биологии классифицируются по следующим направлениям:

1) изучению систематических групп (по объектам исследования). Например, зоология, ботаника, вирусология.

В пределах этих наук имеются узкие направления (или дисциплины). Например, в зоологии выделяют протозоологию, гельминтологию, энтомологию и др.

Кроме того, вы должны рассматривать экзамены в доклинических, а не как личный контроль производительности и стараться не оказывать на вас слишком большого давления. Наконец, оценки доклинического значения не учитываются и не указаны ни в одном сертификате.

Семестр, что составляет одну треть от итогового уровня ваших исследований. Здесь также следует упомянуть, что многие «ужасные истории» часто преувеличиваются в медицинских исследованиях. Несмотря на высокий уровень рабочей нагрузки, большинство студентов считают, что их учеба очень приятная и считают, что времени для досуга достаточно.

2) изучению разных уровней организации живого: молекулярная биология, гистология и др.

3) свойствам и проявлениям жизни отдельных организмов. Например, физиология, генетика, экология.

4) связям с другими науками (в результате интеграции наук). Это биохимия, биофизика, биотехнология, радиобиология и др.

Методы изучения биологии

Вы будете находиться исключительно в центре города, т.е. в Анатомическом институте в Петтенкоферре. 11 возле ворот Отправителя. Это также относится к первой половине. Кроме того, проводятся курсы по нейроанатомии и биохимии в Биомедицинском центре. Особенно в первом семестре вы можете сделать что-то неправильно с покупкой книг. В общем, прежде чем покупать книгу, желательно взять книгу в библиотеке и прочитать главу. Обычно вы получаете очень хорошее впечатление, если это книга.

Кроме того, для тех, кто покупает предпоследнее издание, является рентабельной альтернативой. Книги, упомянутые в предметах, представляют собой стандартные учебники, с которыми работают большинство студентов. Конечно, есть и другие хорошие и содержательные учебники, в зависимости от вкуса и интереса.

Основными методами, которые используются в биологических науках, являются: 1)наблюдение и описание – самый старый (традиционный) метод биологии. Этот ме-

тод широко используется и в наше время (в зоологии, ботанике, цитологии, экологии и др.)

2)сравнение, т.е. сравнительный метод дает возможность найти сходства и различия, общие закономерности в строении организмов.

Содержание: Различные специалисты представляют свою тематическую область

Содержание: Происхождение и смысл медицинских терминов

  • Блокировать события с посещаемостью в течение первых двух дней семестра.
  • Центр города.
  • Стажировка профессиональных полей.
Оба курса не имеют никаких предварительных знаний заранее! Субъект скорее расширяет горизонт, чем классический субъект.

Содержание: анатомия шеи, грудь, устройство движения и анатомия головы

  • Только сценарий для покупки у Дагоберта.
  • Практический курс медицинской терминологии.
  • Один лектор контролирует две соседние группы.
Все экзамены проводятся устно.

3)опыт или эксперимент. Например, опыты Г.Менделя или работы И.П.Павлова в физиологии.

4)моделирование – создание определенной модели или процессов и их изучения. Например, моделирование условий и процессов (недоступных наблюдению) происхождения жизни.

5)исторический метод – изучение закономерности появления и развития организмов

Содержание: цитология, гистология, органы

Первый тест рассматривается лектором, а другой - случайным лектором. Общие сведения: требуется белая шерсть, комплект для подготовки и перчатки. Вы получаете шкафчик, где вы можете хранить все. Лекция: Различные преподаватели представляют теоретические основы. . На экзамен 30 вопросов. 15 вопросов изображения и 15 текстовых вопросов.

Содержание: «Взгляд за рамки медицины»

Общие сведения: чистый буклет облегчает обучение на экзаменах. С помощью буклета можно ознакомиться с устным экзаменом. Биология лекции, цитология, гистология и микроскопическая анатомия, часть 1 Курс микроскопической анатомии, часть 1 Упражнения микроскопической анатомии, часть.

Название темы в расписании

Лекция в течение первого семестра Двухнедельная стажировка в течение первых семестровых перерывов.
  • Анатомическое учреждение, центр города.
  • Различные преподаватели, представляющие этику и аналогичные предметы.
  • Лекция Продольный курс, серия лекций.
  • В конце семестровых перерывов.
Некоторое время, чтобы инвестировать химическое понимание, безусловно, стоит того, поскольку опыт показывает, что это облегчает освоение биохимии.

Основные свойства живого

Живые существа отличаются от неживых тел целым рядом свойств. К основным свойствам живого относятся:

Специфическая организация.

Живые организмы обладают необходимыми структурами, обеспечивающими их жизнедеятельность.

Специфическая организация живых существ проявляется и в особенности химического состава. Из химических элементов большая доля приходится на кислород, углерод, водород, азот. В сумме они составляют более 98% химического состава. Эти элементы образуют в живых организмах сложные органические соединения – белки, жиры, нуклеиновые кислоты, углеводы, которые не встречаются в неживой природе.

Содержание: Основы микробиологии и генетики

Оценка сложности экзамена сильно варьируется в зависимости от индивидуального предыдущего опыта. Лекция в анатомическом учреждении, практическое обучение в практических комнатах в больших домах. Лекция по биологии для студентов-медиков Стажировка в биологии для студентов-медиков.

  • Хирургия лекций для врачей Практическая химия для врачей.
  • Лекция в конце первого семестра Однонедельная стажировка.
  • После первого или второго семестровых перерывов.
В течение половины семестра уже проходит стажировка по биологии, а другая - только после летнего семестра.

Обмен веществ и энергии.

Организмы постоянно совершают обмен веществ и энергии с окружающей средой – это обязательное условие существования.

Обмен веществ и энергии слагается из 2х процессов:

а) синтеза или ассимиляции, или пластического обмен (с поглощением энергии). б) распада или диссимиляции, или энергетического обмена (с выделением энергии)

У всех студентов есть стажировка по химии в двухнедельном блоке. В зависимости от группы, можно рассчитывать на недели для стажировки медсестер. Исследование стоматологической медицины разделено на два основных раздела: доклиническая часть, с семестра до семестра, завершается физикой после того, как осмотр дантиста следует за семестром и длится около шести месяцев.

Секция исследования - доклиническая

Ниже приведен краткий обзор содержимого отдельных семестров, который может варьироваться от семестра к семестру. Обратите внимание на текущие уведомления на черных досках. Устный осмотр, а также практическую неделю исследования стоматологического протеза.

Гомеостаз – поддержание постоянства внутренней среды.

В живых существах протекают сложные саморегулирующиеся процессы, которые идут в строго определенном порядке и направлены на поддержание постоянства внутренней среды (например, на постоянство химического состава). При этом организм находится в состоянии динамического равновесия (т.е. подвижного равновесия), что важно при существовании в меняющихся условиях среды.

Размножение.

Размножение – свойство организмов воспроизводить себе подобных. Каждое живое существо имеет ограниченный срок жизни, но, оставляя после себя потомство, обеспечивает непрерывность и приемственность жизни.

Способность к развитию – изменение объектов живой природы.

Индивидуальное развитие (онтогенез) – развитие особи в большинстве случаев начинается от зиготы (оплодотворенной яйцеклетки) или от деления материнской клетки до конца жизни. В ходе онтогенеза происходит рост, дифференцировка клеток, тканей, органов, взаимодействие отдельных частей. Продолжительность жизни особей ограничивается процессами старения, приводящими к смерти.

Филогенез – историческое развитие мира живых организмов.

Филогенез – это необратимое и направленное развитие живой природы, которое сопровождается образованием новых видов и прогрессивным усложнением жизни. Результатом исторического развития является разнообразие живых существ.

Раздражимость.

Раздражимость – способность организма отвечать на воздействия определенными реакциями. Формой проявления раздражимости является движение.

У растений – тропизм (например, изменение положения листьев в пространстве из-за освещенности – фототропизм).

У одноклеточных животных – таксисы.

Реакции многоклеточных на раздражение осуществляются с помощью нервной системы и называются рефлексами.

Наследственность.

Наследственность – свойство организмов передавать из поколения в поколение характерные признаки вида с помощью носителей наследственной информации, молекул ДНК и РНК.

Изменчивость.

Изменчивость – это свойство организмов приобретать новые признаки. Изменчивость создает разнообразный материал для естественного отбора.

На основании свойств живого ученые пытаются дать определение понятию «жизнь». Современному состоянию развития биологии лучше всего соответствует определение жизни, данное ученым – биофизиком М.В.Волькенштейном: «Живые тела представляют собой открытые саморегулирующиеся, самовоспроизводящиеся системы, построенные из полимеров – белков и нуклеиновых кислот и поддерживающие свое существование в результате обмена веществ и энергии с окружающей средой».

В это определение входят признаки живого. Каждая клетка и организм в целом являются системой, т.е. представляют собой совокупность взаимодействующих, упорядоченных структур (органоидов, клеток тканей, органов). Живые существа – это открытые системы, которые находятся в состоянии динамического равновесия с внешней средой. Живые существа осуществляют непрерывный обмен веществ и энергии с окружающей средой (поглощение и выделение, ассимиляция и диссимиляция).

Уровни организации живых существ

Жизнь на Земле представляет собой целостную систему, состоящую из различных структурных уровней организации биологических существ. Выделяют несколько основных уровней организации (разделение имеет условный характер)

Молекулярно генетический.

Биология начинается с молекулярного уровня, т.к. атомный уровень не несет следов биологической специфичности. Этот уровень исследует молекулы ДНК, РНК, белки, гены и их роль в хранении и передаче генетической информации, в обмене веществ и превращении энергии. Биология изучает законы, характерные для этого уровня.

Клеточный.

Структурной, функциональной и генетической единицей живых существ является клетка. Вирусы, будучи неклеточной формой организации живого, проявляют свои свойства как живые организмы только внедрившись в клетки.

На клеточном уровне изучают строение клеток и клеточных компонентов, самовоспроизведение, реализацию наследственной информации, обмен веществ и энергии, происходящих на уровне клетки.

Организменный.

Структурной единицей на этом уровне служит организм, особь. Организм – самостоятельно существующая в среде система. На этом уровне протекают процессы онтогенеза. В ходе онтогенеза реализуется наследственная информация в определенных условиях внешней среды, т.е. формируется фенотип организма данного биологического вида.

Популяционно-видовой.

Элементарной единицей вида является популяция. На этом уровне изучается обмен генетической информации при скрещивании, изменения генетического состава популяций, факторы, влияющие на динамику генетического состава популяций, проблемы сохранения исчезающего вида.

Экосистемный.

Структурной единицей этого уровня являются экосистемы, под которыми понимаются участки земной поверхности с определенными природно-климатическими условиями и связанные с ними сообщества микроорганизмов, животных и растений, которые образуют неразделимый взаимообусловленный комплекс. Этот уровень изучает круговорот веществ и поток энергии, которые связаны с жизнедеятельностью всех живых организмов. Экосистемы составляют биосферу - область распространения жизни на Земле. Выделяют социальный уровень, характерный для человека.

Все уровни организации тесно объединены между собой, что свидетельствует о целостности живой природы. Без биологических процессов, которые осуществляются на этих уровнях, невозможно существование жизни на Земле.

Человек и все человечество – составляющая часть биосферы. Здоровье человека зависит от состояния биосферы, от умения приспосабливаться к меняющимся условиям среды. Если эта способность проявляется недостаточно, то могут возникнуть нарушения, которые затрагивают различные уровни жизни (клеточный, организменный).

Клетка – элементарная структурная единица живого организма

1.Клеточная теория.

2.Строение клетки.

3.Эволюция клетки.

Клеточная теория.

В 1665г. Р.Гук впервые обнаружил растительные клетки. В 1674г. А.Левенгук открыл животную клетку. В 1839г. Т.Шванн и М.Шлейден сформулировали клеточную теорию. Основным положением клеточной теории было то, что клетка является структурной и функциональной основой живых систем. Но они ошибочно считали, что клетки образуются из бесструктурного вещества. В 1859г. Р.Вирхов доказал, что новые клетки образуются лишь путем деления предшествующих.

Основные положения клеточной теории:

1)Клетка является структурной и функциональной единицей всего живого. Все живые организмы состоят из клеток.

2)Все клетки в основном сходны по химическому составу и обменным процессам. 3)Новые клетки образуются путем деления уже существующих.

4)Все клетки одинаковым образом хранят и реализуют наследственную информацию. 5)Жизнедеятельность многоклеточного организма в целом обусловлена взаимодействием составляющих его клеток.

Строение клетки

По строению выделяют 2 типа клеток:

Прокариоты

Эукариоты

К прокариотам относятся бактерии и сине-зеленые водоросли. Прокариоты от эукариот отличаются следующим: у них нет мембранных органелл, имеющихся в эукариотической клетке (митохондрий, эндоплазматической сети, лизосом, комплекса Гольджи, хлоропластов).

Самое же важное отличие заключается в том, что у них нет окруженного мембраной ядра. ДНК прокариот представлена одной свернутой кольцевой молекулой. У прокариот отсутствуют и центриоли клеточного центра, поэтому они никогда не делятся митозом. Для них характерен амитоз – прямое быстрое деление.

Эукариотические клетки – это клетки одноклеточных и многоклеточных организмов. Они состоят из трех главных составных частей:

- клеточной мембраны, окружающей клетку и отделяющей ее от внешней среды;

- цитоплазмы, содержащей воду, минеральные соли, органические соединения, органеллы и включения;

- ядра, в котором находится генетический материал клетки.

Наружная клеточная мембрана


1 – полярная головка молекулы фосфолипида

2 – жирнокислотный хвост молекулы фосфолипида

3 – интегральный белок

4 – периферический белок

5 – полуинтегральный белок

6 – гликопротеин

7 - гликолипид Наружная клеточная мембрана присуща всем клеткам (животным и растительным),

имеет толщину около 7,5 (до 10) нм и состоит из молекул липидов и белка.

В настоящее время распространена жидкостно-мозаичная модель построения клеточной мембраны. Согласно этой модели молекулы липидов расположены в два слоя, причем своими водоотталкивающими концами (гидрофобными – жирорастворимыми) они обращены друг к другу, а водорастворимыми (гидрофильными) – к периферии. В липидный слой встроены белковые молекулы. Некоторые из них находятся на внешней или внутренней поверхности липидной части, другие – частично погружены или пронизывают мембрану насквозь.

Функции мембран:

- защитная, пограничная, барьерная;

Транспортная;

- рецепторная – осуществляется за счет белков – рецепторов, которые обладают избирательной способностью к определенным веществам (гормонам, антигенам и др.), вступают с ними в химические взаимодействия, проводят сигналы внутрь клетки;

- участвуют в образовании межклеточных контактов;

- обеспечивают движение некоторых клеток (амебовидное движение).

У животных клеток сверху наружной клеточной мембраны имеется тонкий слой гликокаликса. Это комплекс углеводов с липидами и углеводов с белками. Гликокаликс участвует в межклеточных взаимодействиях. Точно такое же строение имеют цитоплазматические мембраны большинства органелл клетки.

У растительных клеток снаружи от цитоплазматической мембраны. расположена клеточная стенка, состоящая из целлюлозы.

Транспорт веществ через цитоплазматическую мембрану.

Существуют два основных механизма для поступления веществ в клетку или выхода из клетки наружу:

1.Пассивный транспорт.

2.Активный транспорт.

Пассивный транспорт веществ происходит без затраты энергии. Примером такого транспорта является диффузия и осмос, при которых движение молекул или ионов

осуществляется из области с высокой концентрацией в область с меньшей концентрацией, например, молекул воды.

Активный транспорт – при этом виде транспорта молекулы или ионы проникают через мембрану против градиента концентрации, для чего необходима энергия. Примером активного транспорта служит натрий-калиевый насос, который активно выкачивает натрий из клетки и поглощает ионы калия из внешней среды, перенося их в клетку. Насос

– это особый белок мембраны, приводит его в движение АТФ.

Активный транспорт обеспечивает поддержание постоянства объема клетки и мембранного потенциала.

Транспорт веществ может осуществляться путем эндоцитоза и экзоцитоза. Эндоцитоз – проникновение веществ в клетку, экзоцитоз – из клетки.

При эндоцитозе плазматическая мембрана образует впячивание или выросты, которые затем обволакивают вещество и отшнуровываясь, превращаются в пузырьки. Различают два типа эндоцитоза:

1)фагоцитозпоглощение твердых частиц (клетки фагоциты), 2)пиноцитоз – поглощение жидкого материала. Пиноцитоз характерен для амебоидных простейших.

Путем экзоцитоза различные вещества выводятся из клеток: из пищеварительных вакуолей удаляются непереваренные остатки пищи, из секреторных клеток выводится их жидкий секрет.

Цитоплазма – (цитоплазма + ядро образуют протоплазму). Цитоплазма состоит из водянистого основного вещества (цитоплазматический матрикс, гиалоплазма, цитозоль) и находящихся в нем разнообразных органелл и включений.

Включения– продукты жизнедеятельности клеток. Выделяют 3 группы включений – трофического, секреторного (клетки желез) и специального (пигмент) значения.

Органеллы – это постоянные структуры цитоплазмы, выполняющие в клетке определенные функции.

Выделяют органеллы общего значения и специальные. Специальные встречаются в большинстве клеток, но в значительном количестве присутствуют только в клетках, выполняющих определенную функцию. К ним относятся микроворсинки эпителиальных клеток кишечника, реснички эпителия трахеи и бронхов, жгутики, миофибриллы (обеспечивающие сокращение мышц и др.).

К органеллам общего значения относят ЭПС, комплекс Гольджи, митохондрии, рибосомы, лизосомы, центриоли клеточного центра, пероксисомы, микротрубочки, микрофиламенты. В растительных клетках – пластиды, вакуоли. Органеллы общего значения можно подразделить на органеллы, имеющие мембранное и немембранное строение.

Органеллы, имеющие мембранное строение бывают двумембранные и одномембранные. К двумембранным относят митохондрии и пластиды. К одномембранным – эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, вакуоли.

Органеллы, не имеющие мембран: рибосомы, клеточный центр, микротрубочки, микрофиламенты.

Митохондрии – это органеллы округлой или овальной формы. Они состоят из двух мембран: внутренней и наружной. Внутренняя мембрана имеет выросты – кристы, которые разделяют митохондрию на отсеки. Отсеки заполнены веществом – матриксом. В матриксе содержатся ДНК, иРНК, тРНК, рибосомы, соли кальция и магния. Здесь происходит автономный биосинтез белка. Основной же функцией митохондрий является синтез энергии и накопления ее в молекулах АТФ. Новые митохондрии образуются в клетке в результате деления старых.


УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»
Кафедра медицинской биологии и генетики

Л.П. Гаврилова, В.В. Потенко, Е.М. Бутенкова

МЕДИЦИНСКАЯ БИОЛОГИЯ

И ОБЩАЯ ГЕНЕТИКА

Учебное пособие для студентов I курса, обучающихся по специальностям лечебное дело и медико-диагностическое дело

Гомель

ГГМУ

УДК 57+575(072)

ББК 28.7+52.4

Г 12
Рецензенты:

профессор кафедры биологии УО «Белорусский государственный медицинский университет», кандидат медицинских наук,

Р.Г. Заяц

профессор кафедры медицинской биологии и общей генетики

УО «Гродненский государственный медицинский университет»,

кандидат медицинских наук,

В.П. Андреев

Гаврилова, Л. П.

Г12 Медицинская биология и общая генетика: учебное пособие для студентов I курса, обучающихся по специальностям лечебное дело и медико-диагностическое дело / Л.П. Гаврилова, В.В. Потенко, Е.М. Бутенкова. - Гомель: УО «Гомельский государственный медицинский университет», 2011. - 213 с.
Представлен учебный материал по медицинской биологии и общей генетике для студентов I курса лечебного и медико-диагностического факультетов медицинских университетов. Материал подготовлен в соответствии с программой по курсу медицинской биологии и общей генетики для медицинских вузов (Минск 2008).
Утверждено и рекомендовано к изданию

УДК 57+575(072)

ББК 28.7+52.4
ISBN © Учреждение образования «Гомельский государственный

медицинский университет», 2011

Тема № 1. Молекулярно-генетический уровень
организации наследственного материала
.

Биология как естественная наука о жизни. Роль биологии в подготовке врача.

Биология – наука о жизни, которая изучает жизнь как особую форму движения материи, законы ее существования и развития. Предметом биологии являются живые организмы, их строение, функции, а также природные сообщества организмов. Термин "биология" впервые был предложен Ж.Б. Ламарком в 1802 году, и происходит от двух греческих слов: bios – жизнь, logos – наука. Вместе с астрономией, физикой, химией, геологией и др. науками, изучающими природу, биология относится к числу естественных наук.

Биология является совокупностью по меньшей мере 50 дисциплин:

а) морфологических (анатомия, гистология), описывающих строение организмов;

б) физиологических (физиология клетки, животных, растений);

в) общебиологических (цитология, генетика, эволюционное учение и т.д.);

д) пограничных (биохимия, биофизика, антропология).

Биология как наука накопила огромный фактический материал. Познание сущности жизни – одна из основных задач современной биологии.

Биология во второй половине 20 века стала ведущей наукой. Она становится лидером естествознания, определяет основные направления его развития в сельском хозяйстве, медицине, экологии, генетике.

Роль биологии определяется формированием мировоззрения на основе изучения фундаментальных дисциплин: цитологии, генетики, медицинской биологии, онтогенеза, экологии и эволюционного учения и выходом во врачебную практику.

Рис. 1 - Значение некоторых разделов курса биологии в подготовке врача

Свойства живых организмов и уровни организации живого.

Фундаментальные свойства живых организмов: саморегуляция, самообновление, самовоспроизведение.

Живое характеризуется целым рядом важнейших признаков:

1. Обмен веществ и энергии . Любой живой организм можно представить как открытую систему, поддерживающую непрерывный обмен веществ и энергии с окружающей средой. Основу обменных процессов составляют реакции пластического (анаболизм) и энергетического обмена (катаболизм).

По типу катаболизма организмы бывают аэробными и анаэробными.

2. Структурная организация. Живое построено из тех же химических элементов, что и неживое, но характеризуется сложностью химических соединений, обусловленной определенной упорядоченностью на молекулярном уровне. Структурная организация – характерное свойство живого на всех уровнях его организации. Типичный пример упорядоченной структуры – хромосома (единство нуклеиновых кислот и белков).

3. Дискретность и целостность. Органический мир целостен, т.к. составляет систему взаимосвязанных частей, и в то же время он дискретен (лат. discretus – прерывистый). Органический мир состоит из отдельных единиц – организмов или особей. Каждый организм состоит из клеток, но функционирует как единое целое.

4. Репродукция – воспроизведение себе подобного.

5. Наследственность и изменчивость важнейшие признаки живого, связанные с передачей потомству от родителей наследственных признаков организма и с возможностью их изменяться под влиянием факторов среды.

6. Рост и развитие признаки организма, обеспечивающие увеличение размеров и развитие за счет деления клеток и их дифференцировки.

7. Раздражимость и движение. Признаки живого, благодаря которым организмы непрерывно контактируют с окружающей средой, другими организмами. У одноклеточных – в виде таксисов, у растений – в виде тропизмов, у высших животных – в виде рефлексов.

8. Внутренняя регуляция и гомеостаз. Любой организм, являясь открытой системой, сохраняет в тоже время постоянство своей внутренней среды (гомеостаз) благодаря нейрогуморальной регуляции гомеостаза.

Выделяют четыре уровня организации живого:

1. Молекулярно-генетический. Элементарной структурой этого уровня является генетический код , передаваемый от поколения к поколению, а элементарным явлением – воспроизведение кодонов по принципу матрицы.

2. Клеточный. Элементарной структорой этого уровня является клетка, а элементаным явлением – деление клеток, их развитие, биосинтез белка в процессе реализации наследственной информации.

3. Онтогенетический. Элементарные структура этого уровня - организм, а элементарное явление – закономерности онтогенеза.

3. Популяционно-видовой. Здесь элементарными структурами являются популяции любого вида живых организмов, а элементарное явление – направленное изменение их генетического состава (генофонда). Последнее ведет к возникновению приспособлений и, в итоге, к видообразованию на основе естественного отбора.

4. Биосферно-биогеоценотический. Элементарными структурами этого уровня являются биогеоценозы, а элементарными явлениями смена биогеоценозов – переходы из одного состояния, временного, неустойчивого равновесия в другое. Принципиальная неделимость биосферы обуславливает необходимость решения многих проблем охраны природы и использования ее ресурсов.

Организация наследственного материала у неклеточных форм, про- и эукариот.

Молекулярно-генетический уровень организации живого связан с хранением и потоком информации в сменяющихся поколениях клеток и организмов. В клетке в этом потоке последовательно участвуют ДНК ядра, цитоплазмы, и-РНК, т-РНК, рибосомы и ферменты активации аминокислот. Они обеспечивают процессы синтеза белка, обмена веществ, закономерностей роста, размножения, наследственность и изменчивость.

Наследственный материал вирусов представлен дву- или одноцепочечной молекулой ДНК, или РНК. Размеры нуклеиновых кислот РНК-содержащих вирусов меньше, чем у ДНК-содержащих вирусов. У вируса табачной мозаики РНК образует одноцепочечную спираль длиной до 300 нм и диаметром 8 нм. Двухцепочечную РНК имеет вирус иммунодефицита человека (ВИЧ). Большинство бактериофагов ДНК-содержащие.

В ДНК вирусов закодирована информация обо всех его структурных белках. Многие вирусы содержат гены специфических ферментов, контролирующих репликацию ДНК клетки-хозяина. Мелкие вирусы содержат только 3 гена, которые кодируют А-белок, репликазу, белок оболочки. Гены вирусов могут существовать в виде фрагментов ДНК, разделенных генетически инертными нуклеотидными последовательностями, которые в момент работы генов "вырезаются" и целостность генетической информации восстанавливается.

Транскрипция и репликация генетической информации осуществляется с участием ферментов клетки-хозяина.

«Хромосомы» прокариот представлены голой кольцевой молекулой ДНК. Прокариоты содержат только по одной хромосоме и являются гаплоидами. Молекулярная масса ДНК прокариот соответствует примерно 2000 структурных генов. Гены располагаются линейно и несут информацию о структуре 3 – 4,5 тысяч различных белков.

Хромосомы эукариот, в отличие от хромосом прокариот, построены из нуклеопротеидов , главными компонентами которых являются ДНК и два типа белков – гистоновых (основных) и негистоновых (кислых) белков. Установлено, что в хромосомах эукариот (за исключением политенных хромосом) имеется лишь одна непрерывная нить ДНК, представляющая единую гигантскую двуспиральную молекулу, состоящую из сотен миллионов пар нуклеотидов. Длина ДНК в хромосоме может достигать нескольких сантиметров. Подтвердилось предположение Н.К. Кольцова, который писал ещё в 30-х годах: «В основе каждой хромосомы лежит тончайшая нить, которая представляет собой спиральный ряд огромных органических молекул – генов. Возможно, что эта спираль является одной гигантской молекулой». В метафазе митоза хромосомы, состоящие из двух сильно спирализованных хроматид, хорошо заметны, но гены в них остаются неактивными на протяжении всего деления. После окончания митоза происходит деспирализация хромосом.

ДНК эукариот по структуре похожа на ДНК прокариот. Различия касаются: количества нуклеотидов в генах, длины молекулы ДНК, порядка чередования нуклеотидных последовательностей, формы укладки (у эукариот – линейная, у прокариот – кольцевая).

Для эукариот характерна избыточность ДНК. Количество ДНК, участвующее в кодировании белков, составляет только 2%. Остальная часть ДНК представлена одинаковыми наборами нуклеотидов, повторяющимися много раз – повторами. Различают многократно и умеренно повторяющиеся последовательности. Они образуют конститутивный гетерохроматин (структурный). Он встроен между уникальными последовательностями. Избыточные гены – это гены представленные в геноме 2-мя и более (до 10 4) копиями

Нуклеиновые кислоты. Строение ДНК. Аутосинтетическая функция – репликация ДНК, гетеросинтетическая – синтез белка. Правила Чаргаффа.

Известны два вида нуклеиновых кислот: ДНК и РНК.

ДНК эукариот находится в ядре в виде хроматина, а также в митохондриях, центриолях и пластидах, а РНК – в ядрышках, матриксе цитоплазмы и рибосомах.

Носителем наследственной информации является ДНК, а РНК служит для передачи и реализации генетической информации у про- и эукариот. С помощью и-РНК происходит процесс перевода последовательности нуклеотидов ДНК в последовательность аминокислот полипептида.

У некоторых организмов носителем наследственной информации может быть РНК, например, у вирусов табачной мозаики, полиомиелита, ВИЧ.

Мономерами нуклеиновых кислот являются нуклеотиды. Установлено, что в хромосомах эукариот гигантская двуспиральная молекула ДНК образована 4 типами нуклеотидов: адениловый, гуаниловый, тимидиловый, цитидиловый. Каждый нуклеотид состоит из азотистого основания – пуринового (Г, А) или пиримидинового (Ц, Т), дезоксирибозы и остатка фосфорной кислоты.

Анализируя ДНК разного происхождения , Э. Чаргафф с коллегами в сороковых годах ХХ века определили закономерности количественного соотношения азотистых оснований, которые впоследствии получили название правил Чаргаффа:

а) количество аденина равно количеству тимина (А=Т);

б) количество гуанина равно количеству цитозина (Г=Ц);

в) количество пуринов равно количеству пиримидинов (Г+А = Ц+Т);

г) количество оснований с 6-аминогруппами равно количеству оснований с 6-кетогруппами (А+Ц = Г+Т).

В то же время соотношение оснований А+Т/Г+Ц является строго видоспецифичным коэффициентом и составляет для человека – 0,66; мыши – 0,81; бактерии – 0,41.

В 1953 году биологом Дж.Уотсоном и физиком Ф.Криком была предложена пространственная молекулярная модель ДНК. Основные постулаты модели заключаются в следующем:

1. Каждая молекула ДНК состоит из двух длинных антипараллельных полинуклеотидных цепей, образующих двойную спираль, закрученную вокруг центральной оси (правозакрученная – В-форма, левозакрученная – Z-форма, обнаруженная А. Ричем в конце 70-х годов).

2. Каждый нуклеозид (пентоза + азотистое основание) расположен в плоскости, перпендикулярной оси спирали.

3. Две полинуклеотидные цепи скреплены водородными связями, образующимися между азотистыми основаниями.

4. Спаривание азотистых оснований строго специфично, пуриновые основания соединяются только с пиримидиновыми: А-Т, Г-Ц.

5. Последовательность оснований одной цепи может значительно варьировать, но азотистые основания другой цепи должны быть строго комплементарны им.

Полинуклеотидные цепи образуются за счет ковалентных связей между соседними нуклеотидами через остаток фосфорной кислоты, который соединяет углерод в пятом положении дезоксирибозы с третьим углеродом соседнего нуклеотида. Цепи разнонаправлены. Если начало одной цепи – 3"-ОН (в третьем положении углерода дезоксирибозы присоединяется гидроксильная группа ОН), то конец цепи – 5"-Ф (к пятому углероду дезоксирибозы присоединяется остаток фосфорной кислоты). Вторая цепь имеет направленность 5"-Ф 3"-ОН, соответственно.

Аутосинтетической функцией ДНК является репликация – авторепродукция. Репликация основана на принципах полуконсервативности, антипараллельности, комплементарности и прерывистости. Наследственная информация ДНК передается в результате репликации по типу матричного синтеза. Он протекает по стадиям: инициация, элонгация и терминация. Процесс приурочен к S-периоду интерфазы. Фермент ДНК-полимераза, используя в качестве матрицы одноцепочечную ДНК, в присутствии нуклеотидов и затравки РНК, строит вторую цепь ДНК.

Синтез ДНК осуществляется по принципу комплементарности. Между нуклеотидами цепи ДНК образуется фосфодиэфирные связи за счет соединений 3 " ОН группы самого последнего нуклеотида с 5 " -фосфатом следующего нуклеотида, который должен присоединиться к цепи.

Изначально были предложены три альтернативные модели репликации ДНК: консервативный, полуконсервативный, дисперсный. Однако, только полуконсервативный был доказан экспериментально.

Консервативный предполагает сохранность целостности исходной двуцепочечной молекулы и синтез дочерней двуцепочной. Половина дочерних молекул построена полностью из нового материала, а половина – из старого материнского.

Полуконсервативный Синтез ДНК начинается с присоединения к точке начала репликации фермента хеликазы, который расплетает участки ДНК. К каждой из цепей присоединяется ДНК связывающей белок, препятствующей их соединению. Единицей репликации является репликон – это участок ДНК между точками начала и окончания репликации. Взаимодействие ферментов с точкой начала репликации называется инициацией. Эта точка движется вдоль цепи ДНК и образуется репликативная вилка. У эукариот работает сразу тысячи репликативных вилок.

У прокариот инициация происходит в одной точке кольца ДНК , при этом две репликативные вилки двигаются в 2-х направлениях. В месте их встречи двуцепочечные молекулы ДНК разъединяются.

Синтез новой цепи идет непрерывно на одной из матриц ДНК (3 " →5 ") и прерывисто – на другой (5 " →3 ") с образованием фрагментов (фрагменты Оказаки) длиной 1000-2000 нуклеотидных остатков у прокариот или 100-200 нуклеотидов у эукариот, которые затем сшиваются ферментом ДНК-лигазой. Имеется точка начала и конца репликации. Репликон движется вдоль молекулы ДНК и расплетаются ее новые участки. Каждая из материнских цепей является матрицей для дочерней, которая синтезируется по принципу комплементарности. При достижении определенной длины молекулы синтез прекращается – терминация (затравка РНК разрушается, а на ее место добавляется ДНК).

Дисперсный – распад ДНК на нуклеотидные фрагменты. Новая двуцепочечная ДНК состоит из спонтанно набранных новых и родительских фрагментов.

ДНК обладает свойством репарации способностью к восстановлению нарушенной структуры вследствие мутации. В основе этого процесса лежит строение молекулы (двойная полинуклеотидная спираль). Восстановление участков, поврежденных мутациями, происходит по принципу комплементарности.

Генетическая информация, содержащаяся в ДНК, передается на рибосомы через и-РНК. Участок ДНК, содержащий информацию о структуре полипептидной цепи, называется гéном. У эукариот списывание наследственной информации с генов регулируется гистоновыми белками. Начало списывания информации связано с освобождением определенного участка ДНК (гена) от гистонов с помощью негистоновых белков, способных узнавать определенные гены.

Строение РНК и её виды. Синтез и-РНК, его этапы.

Информационная РНК является посредником между информацией о структуре белка в ДНК ядра и местом синтеза белковых молекул в цитоплазме на рибосомах. и-РНК не формирует двойной спирали, она представлена одной полинуклеотидной цепью (за исключением двуцепочечной РНК у вирусов). Содержание РНК в клетке колеблется в зависимости от вида организма.

Существует три вида РНК: рибосомальная, информационная, транспортная. Все виды синтезируются на молекуле ДНК в ядре путём транскрипции.

Р-РНК – рибосомальная. Входит в состав рибосом, включает 3000 5000 нуклеотидов. Составляет 80% от общей массы РНК клетки. Она участвует в инициации, окончании синтеза и отделения готовых молекул белка от рибосом.

И-РНК – информационная (матричная). Несёт генетическую информацию, транскрибируемую с ДНК о структуре полипептидной цепи в виде кодонов. Молекула включает от 300 до 3000 нуклеотидов и составляет 3 5% от общего количества РНК.

Т-РНК – транспортная. Обеспечивает транспорт активированных аминокислот к рибосомам. Активированная аминокислота – это тройной комплекс фермента аминоацил т-РНК синтетазы, аминокислоты и АТФ. Имеет вторичную структуру в виде петель, напоминающую по форме листок клевера. В средней части центральной петли находится антикодон.

Молекула ДНК имеет участки, содержащие информацию о структуре белка, которые называются генами и неинформативные межгенные участки – спейсеры. Спейсеры бывают различной длины и регулируют транскрипцию соседнего гена. Транскрибируемые спейсеры копируются при транскрипции вместе с геном, и их комплементарные копии появляются на про-и-РНК. Нетранскрибируемые спейсеры встречаются между генами гистоновых белков ДНК.

Синтез и-РНК идёт с одной нити двуцепочечной молекулы ДНК по принципу комплементарности. И-РНК является копией не всей молекулы ДНК, а только части её – одного гена или группы генов одной функции. Такая группа генов называется оперон . Оперон – единица генетической регуляции. Он включает структурные гены , несущие информацию о структуре белков, регуляторные гены, управляющие работой структурных. К регуляторным генам относят: промотор, оператор, терминатор. Промотор находится в начале каждого оперона. Это посадочная площадка для РНК полимеразы (специфическая последовательность нуклеотидов ДНК, которую фермент узнаёт благодаря химическому сродству). Оператор управляет транскрипцией и имеет сродство с белком-регулятором. Терминатор включает стоп-кодоны, заканчивающие синтез и-РНК.

Транскрипция начинается со стартовой точки молекулы ДНК с участием фермента РНК-полимеразы, для эукариот – адениловый нуклеотид. Синтез и-РНК проходит в 4 стадии:

1) Связывание РНК-полимеразы с промотором;

2) Инициация – начало синтеза (первая диэфирная связь между АТФ и ГТФ и вторым нуклеотидом и-РНК);

3) Элонгация – рост цепи и-РНК;

4) Терминация – завершение синтеза и-РНК.

У эукариот структурные гены разделены на экзоны и интроны. Экзоны – участки, несущие информацию, а интроны – не несущие информацию. Все участки (экзоны и интроны) транскрибируются на молекулу РНК. Процесс созревания и-РНК включает следующие этапы:

1) Первичный транскрипт – длинный предшественник и-РНК с полной информацией с молекулы ДНК (про-и-РНК).

2) Процессинг – укорочение первичного транскрипта путем вырезания неинформативных участков про-и-РНК (интронов) и добавление групп нуклеотидов на 5’ и 3’ концах.

3) Сплайсинг – сшивание информативных участков (экзонов) и образование зрелой и-РНК.

Ген – фрагмент геномной нуклеиновой кислоты. Свойства генов и их функции.

В начале 50-х годов было доказано, что материальной единицей наследственности и изменчивости является ген, который имеет определенную структурно-функциональную организацию. По современному определению ген – это участок молекулы ДНК, детерминирующий синтез определенного полипептида.

Ген – это участок молекулы геномной нуклеиновой кислоты, характеризуемый специфичной для него последовательностью нуклеотидов, представляющей единицу функции, отличной от функции других генов.

Все виды РНК синтезируются на ДНК, этот процесс называется транскрипция . Зрелые и-РНК поступают в цитоплазму на рибосомы, где происходит процесс трансляции: перевод кодовой последовательности нуклеотидов и-РНК в последовательность аминокислот в полипептидной цепи. В трансляции участвует т-РНК, которая транспортирует активированную аминокислоту на рибосому. Кодоны и-РНК взаимодействуют с антикодонами т-РНК по принципу комплементарности , на рибосоме синтезируется первичная структура белка. Полипептидные цепи с рибосом поступает в каналы шероховатого эндоплазматического ретикулума, где они подвергаются ряду изменений, включающих образование дисульфидных мостиков и формирование их третичной структуры.

Генетический код и его свойства. Кодирование генетической информации.

Генетическая информация закодирована в ДНК. Генетический код был выяснен М. Ниренбергом и Х.Г. Корана, за что они были удостоены Нобелевской премии в 1968 году.

Генетический код – порядок расположения нуклеотидов в молекулах нуклеиновых кислот, контролирующий последовательность аминокислот в молекуле полипептида.

Основные свойства кода:

1) Генетический код триплетен. Триплет и-РНК получил название кодона. Кодон соответствует одной аминокислоте.

2) Генетический код является вырожденным. Одной аминокислоте соответствует более чем один кодон (от 2 до 6). Исключения составляют метиониновый и триптофановый (АУГ, ГУГ). В кодонах для одной аминокислоты первые два нуклеотида чаще всего одинаковы, а третий варьирует.

3) Кодоны не перекрываются. Нуклеотидная последовательность считывается в одном направлении подряд, триплет за триплетом.

4) Код однозначен. Кодон шифрует определенную аминокислоту.

5) АУГ является стартовым кодоном.

6) Внутри гена нет стоп кодонов (УАГ, УАА, УГА).

7) Генетический код универсален, он един для всех организмов.

Раскрытие структуры генетического кода и механизма его передачи способствовали развитию молекулярной биологии, генной терапии, а также генной инженерии.

В продолжение темы:
Содержание ЕГЭ

Реальный шанс для наемных тружеников стать подлинными хозяевами своих предприятий, а вместе с тем и своей жизни, был упущен в конце 1980-х годов. Возвращение к капитализму...

Новые статьи
/
Популярные