Где ось абсцисс. Что такое ордината? Также имеются задачи на определение длины отрезка

Оси абсцисс и ось ординат – это вечная проблема, как учеников, так и студентов. Названия осей по переменным х и у запоминаются куда легче, поэтому все привыкли использовать их. Почему нужно знать изначальные названия и откуда взялось понятие ординаты расскажем ниже.

Декартова система координат

Рене Декарт прославился многими открытиями в науке, несмотря на всяческие гонения со стороны бушевавшей инквизиции. Но в умах многих и многих поколений потомков он остался как изобретатель декартовой или прямоугольной системы координат.

Прямоугольная система координат сегодня используется везде: в радарах, для настройки светового оборудования, в оптике - практически любая отрасль не может обойтись без использования столь удобной системы.

Система Декарта состоит из двух взаимно перпендикулярных прямых. В любой системе координат обязательно должны быть:

  • Начало отсчета.
  • Единичные отрезки.
  • Направление осей.

Единичные отрезки на разных осях могут быть различны. Размер отрезка выбирают в соответствии с отметками, которые нужно нанести.

Оси координат

Оси координат это основа системы. Чтобы узнать координаты какой-либо точки, нужно опустить перпендикуляры на каждую из осей. Отрезки, заключенные между точкой отчета и точкой пересечения оси с перпендикуляром зовутся проекциями точки на оси. Размер этих проекций, выраженный в единичных отрезках, и есть координаты точки.

Традиционно оси называют переменными х и у. Это связано с традиционной записью функций, которые часто в виде графиков переносятся на ось координат. Например, функция у=х+3 - прямая линия. При этом сразу понятно, что если подставить любое число вместо х, то можно получить соответствующее значение у. Так высчитывают координаты точки в составе графика.

По факту оси можно называть как угодно. Это зависит только от ученика, решающего задачу. А названия абсцисс и ординат сохраняется всегда.

Если говорить кратко о оси ординат, то так зовется ось у. Эта ось отвечает за перемещения по вертикали. Если точка поднимается или опускается, это можно отследить по изменению ординаты. Ордината переводится как порядок.

Осью абсцисс зовется ось х. Она отвечает за отслеживание горизонтальных перемещений точки. В переводе с латинского языка «абсцисса» переводится как «отрезок».

Если воспользоваться переводом, то можно сказать так: чтобы отметить точку в системе координат, нужно отложить отрезок по горизонтали, равный абсциссе и поднять точку на несколько порядков вверх по ординате. Так проще запомнить правильные названия осей.

Что мы узнали?

Мы поговорили о Декартовой системе координат. Узнали, зачем нужно использовать правильные названия осей. Поговорили о том, что такое абсцисса и ордината. Выяснили, почему чаще всего оси обозначаются х и у. Сказали о том, что традиционное обозначение может быть заменено в любой момент.

Тест по теме

Оценка статьи

Средняя оценка: 4.6 . Всего получено оценок: 166.

В повседневной жизни часто можно услышать фразу: «Оставь мне свои координаты». В ответ человек обычно оставляет свой адрес или номер телефона, то есть данные, по которым его можно найти.

Координаты могут обозначаться самыми разными наборами цифр или букв.

Например, номер автомобиля — это координаты, потому что по номеру машины можно определить из какого она города и кто ёё владелец.

Важно!

Координаты — это набор данных, по которому определяется положение того или иного объекта.

Примерами координат являются: номер вагона и места в поезде, широта и долгота на географической карте, запись положения фигуры на шахматной доске, положение точки на числовой оси и т.д.

Всегда, когда мы по определенным правилам однозначно обозначаем какой-то объект набором букв, чисел или других символов, мы задаём координаты объекта.

Декартова система координат

Французкий математик Рене Декарт (1596-1650) предложил задавать положение точки на плоскости с помощью двух координат.

Для нахождения координат нужны ориентиры, от которых ведётся отсчёт.

  • На плоскости такими ориентирами будут служить две числовые оси. На чертеже обычно первую ось рисуют горизонтально, её называют осью АБСЦИСС и обозначают буквой «X », записывают ось «Ox ». Положительное направление на оси абсцисс выбирают слева направо и показывают стрелкой.
  • Вторую ось проводят вертикально, её называют осью ОРДИНАТ и обозначают буквой «Y », записывают ось «Oy ». Положительное направление на оси ординат выбирают снизу вверх и показывают стрелкой.

Оси взаимно перпендикулярны (т.е. угол между ними равен 90° ) и пересекаются в точке, которую обозначают «O ». Точка «O » является началом отсчёта для каждой из осей.

Запомните!

Система координат — это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчёта для каждой из них.

Координатные оси — это прямые, образующие систему координат.

Ось абсцисс «Ox » — горизонтальная ось.

Ось ординат «Oy » — вертикальная ось.

Координатная плоскость — плоскость, в которой построена система координат. Обозначается плоскость как «x0y ».

Обращаем ваше внимание на выбор длины единичных отрезков по осям.

Цифры, обозначающие числовые значения на осях можно располагать как справа, так и слева от оси «Oy ». Цифры на оси «Ox », как правило, пишут внизу под осью.

Обычно единичный отрезок на оси «0y » равен единичному отрезку на оси «0x ». Но бывают случаи, когда они не равны друг другу.

Оси координат делят плоскость на 4 угла, которые называют координатными четвертями . Четверть, образованная положительными полуосями (правый верхний угол), считают первой I .

Отсчитываем четверти (или координатные углы) против часовой стрелки.


abscissa - отрезок) точки A называется координата этой точки на оси X’X в прямоугольной системе координат . Величина абсциссы точки A равна длине отрезка OB (см. рис. 1). Если точка B принадлежит положительной полуоси OX, то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O, то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y, то её абсцисса равна нулю.

В прямоугольной системе координат ось X’X называется «осью абсцисс».

Правописание

Обратите внимание на написание: Абс цисса, но не абцисса и не абсциса .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Ось абсцисс" в других словарях:

    ось абсцисс - Горизонтальная ось в декартовой системе координат. Тематики информационные технологии в целом EN abscise axishorizontal axisX axis … Справочник технического переводчика

    ось абсцисс - abscisių ašis statusas T sritis automatika atitikmenys: angl. abscissa axis vok. Abszissenachse, f rus. ось абсцисс, f pranc. axe d abscisses, m … Automatikos terminų žodynas

    ось абсцисс - abscisių ašis statusas T sritis fizika atitikmenys: angl. abscissa axis vok. Abszissenachse, f rus. ось абсцисс, f pranc. axe d’abscisses, m … Fizikos terminų žodynas

    Ось (слово «ось» происходит от древнерусского «ость» долгий усик на плевеле каждого зерна колосовых растений или волос в пушном товаре) понятие некой центральной прямой, в том числе воображаемой прямой (линии): В технике:… … Википедия

    ОСЬ - (1) в прикладной механике стержень, опирающийся на опоры и поддерживающий вращающиеся части машин (колёса вагонов) или механизмов (зубчатые колёса часов). В отличие от (см.) О. не передаёт полезного крутящего момента (см. (5)), а работает в… … Большая политехническая энциклопедия

    определение - 2.7 определение: Процесс выполнения серии операций, регламентированных в документе на метод испытаний, в результате выполнения которых получают единичное значение. Источник … Словарь-справочник терминов нормативно-технической документации

    - (от греч. στροφή поворот) алгебраическая кривая 3 го порядка. Строится так (см. Рис. 1): Рис. 1 … Википедия

    Раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего… … Энциклопедия Кольера

    Рис. 1. Построение циссоиды. Синяя и красная линии ветви циссоиды. Циссоида Диокла плоская алгебраическая кривая третьего порядка. В декартовой системе координат, где ось абсцисс направлена по … Википедия

    Циссоида Диокла плоская алгебраическая кривая третьего порядка. В декартовой системе координат, где ось абсцисс направлена по OX, а ось ординат по OY, на отрезке OA = 2a, как на диаметре строится вспомогательная окружность. В точке A проводится… … Википедия

Если вы находитесь в некоторой нулевой точке и размышляете над тем, сколько единиц расстояния нужно пройти строго вперёд, а затем - строго вправо, чтобы оказаться в некоторой другой точке, то вы уже пользуетесь прямоугольной декартовой системой координат на плоскости. А если точка находится выше плоскости, на которой вы стоите, и к вашим расчётам добавляется подъём к точке по лестнице строго вверх также на определённое число единиц расстояния, то вы уже пользуетесь прямоугольной декартовой системой координат в пространстве.

Упорядоченная система двух или трёх пересекающихся перпендикулярных друг другу осей с общим началом отсчёта (началом координат) и общей единицей длины называется прямоугольной декартовой системой координат .

С именем французского математика Рене Декарта (1596-1662) связывают прежде всего такую систему координат, в которой на всех осях отсчитывается общая единица длины и оси являются прямыми. Помимо прямоугольной существует общая декартова система координат (аффинная система координат ). Она может включать и не обязательно перпендикулярные оси. Если же оси перпендикулярны, то система координат является прямоугольной.

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве - три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат - чисел в соответствии единице длины системы координат.

Заметим, что, как следует из определения, существует декартова система координат и на прямой, то есть в одном измерении. Введение декартовых координат на прямой представляет собой один из способов, с помощью которого любой точке прямой ставится в соответствие вполне определённое вещественное число, то есть координата.

Метод координат, возникший в работах Рене Декарта, ознаменовал собой революционную перестройку всей математики. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так, неравенство z < 3 геометрически означает полупространство, лежащее ниже плоскости, параллельной координатной плоскости xOy и находящейся выше этой плоскости на 3 единицы.

С помощью декартовой системы координат принадлежность точки заданной кривой соответствует тому, что числа x и y удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (a ; b ) удовлетворяют уравнению (x - a )² + (y - b )² = R ² .

Прямоугольная декартова система координат на плоскости

Две перпендикулярные оси на плоскости с общим началом и одинаковой масштабной единицей образуют декартову прямоугольную систему координат на плоскости . Одна из этих осей называется осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат . Эти оси называются также координатными осями. Обозначим через M x и M y соответственно проекции произвольной точки М на оси Ox и Oy . Как получить проекции? Проведём через точку М Ox . Эта прямая пересекает ось Ox в точке M x . Проведём через точку М прямую, перпендикулярную оси Oy . Эта прямая пересекает ось Oy в точке M y . Это показано на рисунке ниже.

x и y точки М будем называть соответственно величины направленных отрезков OM x и OM y . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 и y = y 0 - 0 . Декартовы координаты x и y точки М абсциссой и ординатой . Тот факт, что точка М имеет координаты x и y , обозначается так: M (x , y ) .

Координатные оси разбивают плоскость на четыре квадранта , нумерация которых показана на рисунке ниже. На нём же указана расстановка знаков координат точек в зависимости от их расположения в том или ином квадранте.

Помимо декартовых прямоугольных координат на плоскости часто рассматривается также полярная система координат. О способе перехода от одной системы координат к другой - в уроке полярная система координат .

Прямоугольная декартова система координат в пространстве

Декартовы координаты в пространстве вводятся в полной аналогии с декартовыми координатами на плоскости.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом O и одинаковой масштабной единицей образуют декартову прямоугольную систему координат в пространстве .

Одну из указанных осей называют осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат , третью - осью Oz , или осью аппликат . Пусть M x , M y M z - проекции произвольной точки М пространства на оси Ox , Oy и Oz соответственно.

Проведём через точку М Ox Ox в точке M x . Проведём через точку М плоскость, перпендикулярную оси Oy . Эта плоскость пересекает ось Oy в точке M y . Проведём через точку М плоскость, перпендикулярную оси Oz . Эта плоскость пересекает ось Oz в точке M z .

Декартовыми прямоугольными координатами x , y и z точки М будем называть соответственно величины направленных отрезков OM x , OM y и OM z . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 , y = y 0 - 0 и z = z 0 - 0 .

Декартовы координаты x , y и z точки М называются соответственно её абсциссой , ординатой и аппликатой .

Попарно взятые координатные оси располагаются в координатных плоскостях xOy , yOz и zOx .

Задачи о точках в декартовой системе координат

Пример 1.

A (2; -3) ;

B (3; -1) ;

C (-5; 1) .

Найти координаты проекций этих точек на ось абсцисс.

Решение. Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, и ординату (координату на оси Oy , которую ось абсцисс пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось абсцисс:

A x (2; 0) ;

B x (3; 0) ;

C x (-5; 0) .

Пример 2. В декартовой системе координат на плоскости даны точки

A (-3; 2) ;

B (-5; 1) ;

C (3; -2) .

Найти координаты проекций этих точек на ось ординат.

Решение. Как следует из теоретической части этого урока, проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, и абсциссу (координату на оси Ox , которую ось ординат пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось ординат:

A y (0; 2) ;

B y (0; 1) ;

C y (0; -2) .

Пример 3. В декартовой системе координат на плоскости даны точки

A (2; 3) ;

B (-3; 2) ;

C (-1; -1) .

Ox .

Ox Ox Ox , будет иметь такую же абсциссу, что и данная точка, и ординату, равную по абсолютной величине ординате данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Ox :

A" (2; -3) ;

B" (-3; -2) ;

C" (-1; 1) .

Решить задачи на декартову систему координат самостоятельно, а затем посмотреть решения

Пример 4. Определить, в каких квадрантах (четвертях, рисунок с квадрантами - в конце параграфа "Прямоугольная декартова система координат на плоскости") может быть расположена точка M (x ; y ) , если

1) xy > 0 ;

2) xy < 0 ;

3) x y = 0 ;

4) x + y = 0 ;

5) x + y > 0 ;

6) x + y < 0 ;

7) x y > 0 ;

8) x y < 0 .

Пример 5. В декартовой системе координат на плоскости даны точки

A (-2; 5) ;

B (3; -5) ;

C (a ; b ) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Продолжаем решать задачи вместе

Пример 6. В декартовой системе координат на плоскости даны точки

A (-1; 2) ;

B (3; -1) ;

C (-2; -2) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Решение. Поворачиваем на 180 градусов вокруг оси Oy направленный отрезок, идущий от оси Oy до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Oy , будет иметь такую же ординату, что и данная точка, и абсциссу, равную по абсолютной величине абсциссе данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Oy :

A" (1; 2) ;

B" (-3; -1) ;

C" (2; -2) .

Пример 7. В декартовой системе координат на плоскости даны точки

A (3; 3) ;

B (2; -4) ;

C (-2; 1) .

Найти координаты точек, симметричных этим точкам относительно начала координат.

Решение. Поворачиваем на 180 градусов вокруг начала координат направленный отрезок, идущий от начала координат к данной точке. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно начала координат, будет иметь абсциссу и ординату, равные по абсолютной величине абсциссе и ординате данной точки, но противоположные им по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно начала координат:

A" (-3; -3) ;

B" (-2; 4) ;

C (2; -1) .

Пример 8.

A (4; 3; 5) ;

B (-3; 2; 1) ;

C (2; -3; 0) .

Найти координаты проекций этих точек:

1) на плоскость Oxy ;

2) на плоскость Oxz ;

3) на плоскость Oyz ;

4) на ось абсцисс;

5) на ось ординат;

6) на ось апликат.

1) Проекция точки на плоскость Oxy расположена на самой этой плоскости, а следовательно имеет абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxy :

A xy (4; 3; 0) ;

B xy (-3; 2; 0) ;

C xy (2; -3; 0) .

2) Проекция точки на плоскость Oxz расположена на самой этой плоскости, а следовательно имеет абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxz :

A xz (4; 0; 5) ;

B xz (-3; 0; 1) ;

C xz (2; 0; 0) .

3) Проекция точки на плоскость Oyz расположена на самой этой плоскости, а следовательно имеет ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную нулю. Итак получаем следующие координаты проекций данных точек на Oyz :

A yz (0; 3; 5) ;

B yz (0; 2; 1) ;

C yz (0; -3; 0) .

4) Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, а ордината и апликата проекции равны нулю (поскольку оси ординат и апликат пересекают ось абсцисс в точке 0). Получаем следующие координаты проекций данных точек на ось абсцисс:

A x (4; 0; 0) ;

B x (-3; 0; 0) ;

C x (2; 0; 0) .

5) Проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, а абсцисса и апликата проекции равны нулю (поскольку оси абсцисс и апликат пересекают ось ординат в точке 0). Получаем следующие координаты проекций данных точек на ось ординат:

A y (0; 3; 0) ;

B y (0; 2; 0) ;

C y (0; -3; 0) .

6) Проекция точки на ось апликат расположена на самой оси апликат, то есть оси Oz , а следовательно имеет апликату, равную апликате самой точки, а абсцисса и ордината проекции равны нулю (поскольку оси абсцисс и ординат пересекают ось апликат в точке 0). Получаем следующие координаты проекций данных точек на ось апликат:

A z (0; 0; 5) ;

B z (0; 0; 1) ;

C z (0; 0; 0) .

Пример 9. В декартовой системе координат в пространстве даны точки

A (2; 3; 1) ;

B (5; -3; 2) ;

C (-3; 2; -1) .

Найти координаты точек, симметричных этим точкам относительно:

1) плоскости Oxy ;

2) плоскости Oxz ;

3) плоскости Oyz ;

4) оси абсцисс;

5) оси ординат;

6) оси апликат;

7) начала координат.

1) "Продвигаем" точку по другую сторону оси Oxy Oxy , будет иметь абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную по величине апликате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxy :

A" (2; 3; -1) ;

B" (5; -3; -2) ;

C" (-3; 2; 1) .

2) "Продвигаем" точку по другую сторону оси Oxz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxz , будет иметь абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную по величине ординате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxz :

A" (2; -3; 1) ;

B" (5; 3; 2) ;

C" (-3; -2; -1) .

3) "Продвигаем" точку по другую сторону оси Oyz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oyz , будет иметь ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную по величине абсциссе данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oyz :

A" (-2; 3; 1) ;

B" (-5; -3; 2) ;

C" (3; 2; -1) .

По аналогии с симметричными точками на плоскости и точками пространства, симметричными данным относительно плоскостей, замечаем, что в случае симметрии относительно некоторой оси декартовой системы координат в пространстве, координата на оси, относительно которой задана симметрия, сохранит свой знак, а координаты на двух других осях будут теми же по абсолютной величине, что и координаты данной точки, но противоположными по знаку.

4) Свой знак сохранит абсцисса, а ордината и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси абсцисс:

A" (2; -3; -1) ;

B" (5; 3; -2) ;

C" (-3; -2; 1) .

5) Свой знак сохранит ордината, а абсцисса и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси ординат:

A" (-2; 3; -1) ;

B" (-5; -3; -2) ;

C" (3; 2; 1) .

6) Свой знак сохранит апликата, а абсцисса и ордината поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси апликат:

A" (-2; -3; 1) ;

B" (-5; 3; 2) ;

C" (3; -2; -1) .

7) По аналогии с симметрии в случае с точками на плоскости, в случае симметрии относительно начала координат все координаты точки, симметричной данной, будут равными по абсолютной величине координатам данной точки, но противоположными им по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно начала координат.

Абсцисса – часто встречаемый термин в математике, который многие не понимают. Понятие абсциссы поможет в понимании многих математических задач. Тема данной статьи посвящена именно ей.

Что такое абсцисса

Перед тем, как понять что такое абсцисса, необходимо узнать о сути еще нескольких терминов, а именно:

  • Прямоугольная система координат. Прямоугольная система координат – система, где есть всего лишь два направления. Такую систему обычно называют двухмерной. Одно направление в виде горизонтальной прямой и обозначается буквой x , второе направление – вертикальная прямая, которая обозначается буквой y . Место пересечения двух этих направлений называется началом координат. Отчет координат начинается именно с этой точки. Те значения горизонтальной прямой, которые находятся правее от начала координат положительны. Те, которые левее- отрицательны. Соответственно, те значения y прямой, которые находятся выше начала координат – положительны, а те которые ниже – отрицательны.
  • Ордината. Координату какой-либо точки, которая соответствует оси y (в системе координат), называют ординатой.

Исходя из последнего условия, можно легко догадаться, что если ордината – это координата на оси y , которая соответствует какой-либо точке, то абсциссой называют координату той же точки, но которая расположена на оси x .

Дана точка A, с координатами (4; 6). Что тут абсцисса, а что ордината?

Запомните, что когда пишутся координаты какой-то точки, то на первом месте указываются координаты на оси x , а на втором – оси y . Таким образом, абсцисса точки A равна 4, а ордината равна 6.

Теперь вы знаете что такое абсцисса и сможете, не задумываясь, вникать в смысл задачи при виде этого слова. Хорошо изучить данную тему, ведь координаты используются во многих сферах – начиная от математики и заканчивая программированием.

В продолжение темы:
Содержание ЕГЭ

Реальный шанс для наемных тружеников стать подлинными хозяевами своих предприятий, а вместе с тем и своей жизни, был упущен в конце 1980-х годов. Возвращение к капитализму...

Новые статьи
/
Популярные