Урок черчения "построение проекций точек на поверхности предмета". Проекции точки на три плоскости проекций Горизонтальную проекцию точек а
Для построения изображений ряда деталей необходимо уметь находить проекции отдельных точек. Например, трудно вычертить вид сверху детали, приведенной на рис. 139, не строя горизонтальных проекций точек А, В, С, D, Е, F и др.
Задача нахождения проекций точек по одной, заданной на поверхности предмета, решается следующим образом. Сначала находят проекции поверхности, на которой расположена точка. Затем, проведя линию связи к проекции, где поверхность изображается линией, находят вторую проекцию точки. Третья проекция лежит на пересечении линий связи.
Рассмотрим пример.
Даны три проекции детали (рис. 140, а). Задана горизонтальная проекция а точки А, лежащей на видимой поверхности. Нужно найти остальные проекции этой точки.
Прежде всего надо провести вспомогательную прямую. Если даны два вида, то место вспомогательной прямой на чертеже выбирают произвольно, правее вида сверху, так чтобы вид слева оказался на нужном расстоянии от главного вида (рис. 141).
Если три вида уже построены (рис. 142, а), то место вспомогательной прямой произвольно выбирать нельзя; нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии и через полученную точку k (рис. 142, б) провести под углом 45° отрезок прямой, который и будет вспомогательной прямой.
Если осей симметрии нет, то продолжают до пересечения в точке k 1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 142, б).
Проведя вспомогательную прямую, приступают к построению проекций точки (см. рис. 140, б).
Фронтальная а" и профильная а" проекции точки А должны располагаться на соответствующих проекциях поверхности, которой принадлежит точка А. Находят эти проекции. На рис. 140, б они выделены цветом. Проводят линии связи, как указано стрелками. В местах пересечения линий связи с проекциями поверхности находятся искомые проекции а" и а".
Построение проекций точек В, С, D показано на рис. 140, в линиями связи со стрелками. Заданные проекции точек цветные. Линии связи проводят к той проекции, на которой поверхность изображается в виде линии, а не в виде фигуры. Поэтому сначала находят фронтальную проекцию с" точки С. Профильная проекция с точки С определяется пересечением линий связи.
Если поверхность ни на одной проекции не изображается линией, то для построения проекций точек надо применять вспомогательную плоскость. Например, дана фронтальная проекция d точки А, лежащей на поверхности конуса (рис. 143, а). Через точку параллельно основанию проводят вспомогательную плоскость, которая пересечет конус по окружности; ее фронтальная проекция - отрезок прямой, а горизонтальная - окружность диаметром, равным длине этого отрезка (рис. 143, б). Проведя к этой окружности из точки а" линию связи, получают горизонтальную проекцию а точки А.
Профильную проекцию а" точки А находят обычным способом на пересечении линий связи.
Таким же приемом можно найти проекции точки, лежащей, например, на поверхности пирамиды или шара. При пересечении пирамиды плоскостью, параллельной основанию и проходящей через заданную точку, образуется фигура, подобная основанию. На проекциях этой фигуры лежат проекции заданной точки.
Ответьте на вопросы
1. Под каким углом проводят вспомогательную прямую?
2. Где проводят вспомогательную прямую, если заданы виды спереди и сверху, а надо построить вид слева?
3. Как определить место вспомогательной прямой при наличии трех видов?
4. В чем заключается способ построения проекций точки по одной заданной, если одна из поверхностей предмета изображается линией?
5. Для каких геометрических тел и в каких случаях проекции точки, заданной на их поверхности, находят, пользуясь вспомогательной плоскостью?
Задания к § 20
Упражнение 68
Запишите в рабочей тетради, каким проекциям точек, обозначенных на видах цифрами, соответствуют точки, обозначенные на наглядном изображении буквами в примере, указанном Вам преподавателем (рис. 144, а-г).
Упражнение 69
На рис. 145, а-б буквами обозначено лишь по одной проекции некоторых из вершин. Найдите в примере, указанном Вам преподавателем, остальные проекции этих вершин и обозначьте их буквами. Постройте в одном из примеров недостающие проекции точек, заданных на ребрах предмета (рис. 145, г и д). Выделите цветом проекции ребер, на" которых находятся точки. Задание выполните на прозрачной бумаге, наложив ее на страницу учебника. Перечерчивать рис. 145 не надо.
Упражнение 70
Найдите недостающие проекции точек, заданных одной проекцией на видимых поверхностях предмета (рис. 146). Обозначьте их буквами. Заданные проекции точек выделите цветом. Решить задание Вам поможет наглядное изображение. Задание можно выполнить как в рабочей тетради, так и на прозрачной бумаге, наложив ее на страницу учебника. В последнем случае перечерчивать рис. 146 не надо.
Упражнение 71
В примере, указанном Вам преподавателем, перечертите три вида (рис. 147). Постройте недостающие проекции точек, заданных на видимых поверхностях предмета. Заданные проекции точек выделите цветом. Обозначьте буквами все проекции точек. Для построения проекций точек воспользуйтесь вспомогательной прямой. Выполните технический рисунок и нанесите на нем заданные точки.
Цели:
- Изучение правил построения проекций точек на поверхности предмета и чтения чертежей.
- Развивать пространственное мышление, умение анализировать геометрическую форму предмета.
- Воспитывать трудолюбие, умение сотрудничать при работе в группах, интерес к предмету.
ХОД УРОКА
I ЭТАП. МОТИВАЦИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ.
II ЭТАП. ФОРМИРОВАНИЕ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ.
ЗДОРОВЬЕСБЕРЕГАЮЩАЯ ПАУЗА. РЕФЛЕКСИЯ (НАСТРОЕНИЕ)
III ЭТАП. ИНДИВИДУАЛЬНАЯ РАБОТА.
I ЭТАП. МОТИВАЦИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ
1) Учитель: Проверьте свое рабочее место, всё ли на месте? Все готовы к работе?
ВЗДОХНУЛИ ГЛУБОКО, НА ВЫДОХЕ ЗАДЕРЖАЛИ ДЫХАНИЕ, ВЫДОХНУЛИ.
Определите свое настроение на начало урока по схеме (такая схема лежит у каждого на столе)
Я ЖЕЛАЮ ВАМ УДАЧИ.
2) Учитель: Практическая работа по теме “ Проекции вершин, ребер, граней” показала, что есть ребята, которые допускают ошибки при проецировании. Путаются, какая из двух совпадающих точек на чертеже является видимой вершиной, а какая невидимой; когда ребро параллельно плоскости, а когда перпендикулярно. То же самое с гранями.
Чтобы исключить повторение ошибок, по консультирующей карточке выполните необходимые задания и исправьте ошибки в практической работе (от руки). И работая, помните:
“ОШИБАТЬСЯ МОЖЕТ КАЖДЫЙ, ОСТАВАТЬСЯ ПРИ СВОЕЙ ОШИБКЕ – ТОЛЬКО БЕЗУМНЫЙ”.
А тот, кто хорошо усвоил тему, поработают в группах с творческими заданиями (см. Приложение 1 ).
II ЭТАП. ФОРМИРОВАНИЕ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ
1) Учитель:
На производстве встречаются
множество деталей, которые крепятся друг к другу
определенным образом.
Например:
Крышка рабочего стола крепится к вертикальным
стойкам. Обратите внимание на стол, за которым вы
находитесь, как и чем крепятся между собой крышка
и стойки?
Ответ: Болтом.
Учитель: А что для болта необходимо?
Ответ: Отверстие.
Учитель: Действительно. А чтобы отверстие выполнить, надо знать его расположение на изделие. Изготавливая стол, столяр не может каждый раз обращаться к заказчику. Значит, чем необходимо обеспечить столяра?
Ответ: Чертежом.
Учитель: Чертеж!? А что мы с вами называем чертежом?
Ответ: Чертежом называется изображение предмета прямоугольными проекциями в проекционной связи. По чертежу можно представить геометрическую форму и конструкцию изделия.
Учитель: Мы с вами выполнили прямоугольные проекции, а дальше? Сможем ли мы по одним проекциям определить расположение отверстий? Что нам необходимо еще знать? Чему научиться?
Ответ: Строить точки. Находить проекции этих точек на всех видах.
Учитель:
Молодцы! Это и есть цель нашего
урока, и тема: Построение проекций точек на
поверхности предмета.
Запишите тему урока в
тетрадь.
Мы с вами знаем, что любая точка или отрезок на
изображении предмета являются проекцией
вершины, ребра, грани, т.е. каждый вид – это
изображение не с одной стороны (гл. вид, вид
сверху, вид слева), а всего предмета.
Для того, чтобы правильно находить проекции
отдельных точек, лежащих на гранях, нужно прежде
всего найти проекции этой грани, а затем при
помощи линий связи отыскать проекции точек.
(Смотрим чертеж на доске, работаем в тетради, где выполнены дома 3 проекции такой же детали).
– Открыли тетрадь с выполненным чертежом (Объяснение построения точек на поверхности предмета с наводящими вопросами на доске, а учащиеся закрепляют в тетради.)
Учитель: Рассмотрим точку В . Какой плоскости параллельна грань с этой точкой?
Ответ: Грань параллельна фронтальной плоскости.
Учитель: Задаемся проекцией точки b’ на фронтальной проекции. Проводим вниз от точки b’ вертикальную линию связи до горизонтали проекции. Где будет находиться горизонтальная проекция точки В ?
Ответ: На пересечении с горизонтальной проекцией грани, которая спроецировалась в ребро. И находится внизу проекции (вида).
Учитель: Профильная проекция точки b’’ , где будет находиться? Как мы ее найдем?
Ответ: На пересечении горизонтальной линии связи из b’ с вертикальным ребром справа. Это ребро и есть проекция грани с точкой В.
К ДОСКЕ ВЫЗЫВАЮТСЯ ЖЕЛАЮЩИЕ ПОСТРОИТЬ СЛЕДУЮЩУЮ ПРОЕКЦИЮ ТОЧКИ.
Учитель: Проекции точки А так же находятся с помощью линий связи. Какой плоскости параллельна грань с точкой А ?
Ответ: Грань параллельна профильной плоскости. Задаемся на профильной проекции точкой а’’ .
Учитель: На какой проекции грань спроецировалась в ребро?
Ответ: На фронтальной и горизонтальной. Проведем горизонтальную линию связи до пересечения с вертикальным ребром слева на фронтальной проекции, получим точку а’ .
Учитель: А как найти проекцию точки А на горизонтальной проекции? Ведь линии связи из проекции точек а’ и а’’ не пересекают проекцию грани (ребро) на горизонтальной проекции слева. Что нам может помочь?
Ответ: Можно воспользоваться постоянной прямой (она определяет место вида слева) из а’’ проводят вертикальную линию связи до пересечения с постоянной прямой. Из точки пересечения проводят горизонтальную линию связи, до пересечения с вертикальным ребром слева. (Это и есть грань с точкой А) и обозначает проекцию точкой а .
2) Учитель: У каждого на столе лежит карточка-задание, с прикреплённой калькой. Рассмотрите чертёж, теперь попробуйте самостоятельно, без перечерчивания проекций, найти на чертеже заданные проекции точек.
– Найдите в учебнике стр. 76 рис. 93. Проверьте себя. Кто выполнил правильно – оценка "5""; одна ошибка – ‘’4’’; две – ‘’3’’.
(Оценки выставляют сами учащиеся в листе самоконтроля).
– Собрать карточки для проверки.
3) Работа в группах: Время ограничено: 4мин. + 2 мин. проверки. (Две парты с учащимися объединяются, и внутри группы выбирается руководитель).
На каждую группу раздаются задания в 3-х уровнях. Учащиеся выбирают задания по уровням, (по своему желанию). Решают задачи на построение точек. Обсуждают построение под контролем руководителя. Затем на доске с помощью кодоскопа высвечивается правильный ответ. Все проверяют правильность выполнения проецирования точек. При помощи руководителя группы выставляют оценки на заданиях и в листах самоконтроля (см. Приложение 2 и Приложение 3 ).
ЗДОРОВЬЕСБЕРЕГАЮЩАЯ ПАУЗА. РЕФЛЕКСИЯ
“Поза фараона” – сесть на край стула, выпрямить спину, руки согнуть в локтях, ноги скрестить и поставить на носочки. Вздохнуть, напрячь все мышцы тела на задержке дыхания, выдохнуть. Сделать 2-3 раза. Глаза сильно зажать, до звездочек, открыть. Отметить свое настроение.
III ЭТАП. ПРАКТИЧЕСКАЯ ЧАСТЬ. (Индивидуальные задания)
Предлагаются карточки-задания на выбор с разным уровнем. Учащиеся самостоятельно выбирают по своим силам вариант. Найти проекции точек на поверхности предмета. Работы сдаются и оцениваются к следующему уроку. (См. Приложение 4 , Приложение 5 , Приложение 6 ).
IV ЭТАП. ЗАКЛЮЧИТЕЛЬНЫЙ
1) Задание на дом. (Инструктаж). Выполняется по уровням:
В – понимание, на "3". Упр.1 рис. 94а стр. 77 – по заданию в учебнике: достроить недостающие проекции точек на данных проекциях.
Б – применение, на "4". Упр.1 рис.94 а, б. достроить не достающие проекции и обозначить вершины на наглядном изображении в 94а и 94б.
А – анализ, на "5". (Повышенной сложности.) Упр. 4 рис.97 – построить не достающие проекции точек и обозначить их буквами. Наглядного изображения нет.
2) Рефлексивный анализ.
- Определите настроение в конце урока, отметьте в листе самоконтроля любым знаком.
- Что нового узнали сегодня на уроке?
- Какая форма работы наиболее эффективна для вас: групповая, индивидуальная и вы хотели бы, чтобы она повторялась на следующем уроке?
- Собрать листки самоконтроля.
3) “Ошибающийся учитель”
Учитель: Вы научились строить проекции вершин, ребер, граней и точки на поверхности предмета, соблюдая все правила построения. Но вот вам передали чертеж, где есть ошибки. Попробуйте теперь себя в роли учителя. Найдите сами ошибки, если найдете все 8–6 ошибок, то оценка соответственно “5”; 5–4 ошибки –“4”, 3 ошибки – “3”.
Ответы:
Изучение свойств фигур в пространстве и на плоскости невозможно без знания расстояний между точкой и такими геометрическими объектами, как прямая и плоскость. В данной статье покажем, как находить эти расстояния, рассматривая проекцию точки на плоскость и на прямую.
Уравнение прямой для двумерного и трехмерного пространств
Расчет расстояний точки до прямой и плоскости осуществляется с использованием ее проекции на эти объекты. Чтобы уметь находить эти проекции, следует знать, в каком виде задаются уравнения для прямых и плоскостей. Начнем с первых.
Прямая представляет собой совокупность точек, каждую из которых можно получить из предыдущей с помощью переноса на параллельные друг другу вектора. Например, имеется точка M и N. Соединяющий их вектор MN¯ переводит M в N. Имеется также третья точка P. Если вектор MP¯ или NP¯ параллелен MN¯, тогда все три точки на одной прямой лежат и образуют ее.
В зависимости от размерности пространства уравнение, задающее прямую, может изменять свою форму. Так, всем известная линейная зависимость координаты y от x в пространстве описывает плоскость, которая параллельна третьей оси z. В связи с этим в данной статье будем рассматривать только векторное уравнение для прямой. Оно имеет одинаковый вид для плоскости и трехмерного пространства.
В пространстве прямую можно задать следующим выражением:
(x; y; z) = (x 0 ; y 0 ; z 0) + α*(a; b; c)
Здесь значения координат с нулевыми индексами соответствуют принадлежащей прямой некоторой точки, u¯(a; b; c) - координаты направляющего вектора, который лежит на данной прямой, α - произвольное действительное число, изменяя которое можно получить все точки прямой. Это уравнение называется векторным.
Часто приведенное уравнение записывают в раскрытом виде:
Аналогичным образом можно записать уравнение для прямой, находящейся в плоскости, то есть в двумерном пространстве:
(x; y) = (x 0 ; y 0) + α*(a; b);
Уравнение плоскости
Чтобы уметь находить расстояние от точки до плоскостей проекций, необходимо знать, как задается плоскость. Так же, как и прямую, ее можно представить несколькими способами. Здесь рассмотрим один единственный: общее уравнение.
Предположим, что точка M(x 0 ; y 0 ; z 0) плоскости принадлежит, а вектор n¯(A; B; C) ей перпендикулярен, тогда для всех точек (x; y; z) плоскости справедливым будет равенство:
A*x + B*y + C*z + D = 0, где D = -1*(A*x 0 + B*y 0 + C*z 0)
Следует запомнить, что в этом общем уравнении плоскости коэффициенты A, B и C являются координатами нормального к плоскости вектора.
Расчет расстояний по координатам
Перед тем как переходить к рассмотрению проекций на плоскость точки и на прямую, следует напомнить, как следует рассчитывать расстояние между двумя известными точками.
Пусть имеются две пространственные точки:
A 1 (x 1 ; y 1 ; z 1) и A 2 (x 2 ; y 2 ; z 2)
Тогда дистанция между ними вычисляется по формуле:
A 1 A 2 = √((x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2)
С помощью этого выражения также определяют длину вектора A 1 A 2 ¯.
Для случая на плоскости, когда две точки заданы всего парой координат, можно записать аналогичное равенство без присутствия в нем члена с z:
A 1 A 2 = √((x 2 -x 1) 2 +(y 2 -y 1) 2)
Теперь рассмотрим различные случаи проекции на плоскости точки на прямую и на плоскость в пространстве.
Точка, прямая и расстояние между ними
Предположим, что имеется некоторая точка и прямая:
P 2 (x 1 ; y 1);
(x; y) = (x 0 ; y 0) + α*(a; b)
Расстояние между этими геометрическими объектами будет соответствовать длине вектора, начало которого лежит в точке P 2 , а конец находится в такой точке P на указанной прямой, для которой вектор P 2 P ¯ этой прямой перпендикулярен. Точка P называется проекцией точки P 2 на рассматриваемую прямую.
Ниже приведен рисунок, на котором изображена точка P 2 , ее расстояние d до прямой, а также вектор направляющий v 1 ¯. Также на прямой выбрана произвольная точка P 1 и от нее до P 2 проведен вектор. Точка P здесь совпадает с местом, где перпендикуляр пересекает прямую.
Видно, что оранжевые и красные стрелки образуют параллелограмм, сторонами которого являются вектора P 1 P 2 ¯ и v 1 ¯, а высотой - d. Из геометрии известно, что для нахождения высоты параллелограмма следует разделить его площадь на длину основания, на которое опущен перпендикуляр. Поскольку площадь параллелограмма вычисляется как векторное произведение его сторон, то получаем формулу для расчета d:
d = ||/|v 1 ¯|
Все вектора и координаты точек в этом выражении известны, поэтому можно им пользоваться без выполнения каких-либо преобразований.
Решить эту задачу можно было бы иначе. Для этого следует записать два уравнения:
- скалярное произведение P 2 P ¯ на v 1 ¯ должно равняться нулю, поскольку эти вектора взаимно перпендикулярны;
- координаты точки P должны удовлетворять уравнению прямой.
Этих уравнений достаточно, чтобы найти координаты P, а затем и длину d по формуле, приведенной в предыдущем пункте.
Задача на нахождение дистанции между прямой и точкой
Покажем, как использовать данные теоретические сведения для решения конкретной задачи. Допустим, известны следующая точка и прямая:
(x; y) = (3; 1) - α*(0; 2)
Необходимо найти точки проекции на прямую на плоскости, а также расстояние от M до прямой.
Обозначим проекцию, которую следует найти, точкой M 1 (x 1 ; y 1). Решим эту задачу двумя способами, описанными в предыдущем пункте.
Способ 1. Направляющий вектор v 1 ¯ координаты имеет (0; 2). Чтобы построить параллелограмм, выберем принадлежащую прямой какую-нибудь точку. Например, точку с координатами (3; 1). Тогда вектор второй стороны параллелограмма будет иметь координаты:
(5; -3) - (3; 1) = (2; -4)
Теперь следует вычислить произведение векторов, задающих стороны параллелограмма:
Подставляем это значение в формулу, получаем расстояние d от M до прямой:
Способ 2. Теперь найдем другим способом не только расстояние, но и координаты проекции M на прямую, как это требует условие задачи. Как было сказано выше, для решения задачи необходимо составить систему уравнений. Она примет вид:
(x 1 -5)*0+(y 1 +3)*2 = 0;
(x 1 ; y 1) = (3; 1)-α*(0; 2)
Решаем эту систему:
Проекция исходной точки координаты имеет M 1 (3; -3). Тогда искомое расстояние равно:
d = |MM 1 ¯| = √(4+0) = 2
Как видим, оба способа решения дали одинаковый результат, что говорит о правильности выполненных математических операций.
Проекция точки на плоскость
Теперь рассмотрим, что представляет собой проекция точки, заданной в пространстве, на некоторую плоскость. Несложно догадаться, что этой проекцией также является точка, которая вместе с исходной образует перпендикулярный плоскости вектор.
Предположим, что проекция на плоскость точки М координаты имеет следующие:
Сама плоскость описывается уравнением:
A*x + B*y + C*z + D = 0
Исходя из этих данных, мы можем составить уравнение прямой, пересекающей плоскость под прямым углом и проходящей через M и M 1:
(x; y; z) = (x 0 ; y 0 ; z 0) + α*(A; B; C)
Здесь переменные с нулевыми индексами - координаты точки M. Рассчитать положение на плоскости точки M 1 можно исходя из того, что ее координаты должны удовлетворять обоим записанным уравнениям. Если этих уравнений при решении задачи будет недостаточно, то можно использовать условие параллельности MM 1 ¯ и вектора направляющего для заданной плоскости.
Очевидно, что проекция точки, принадлежащей плоскости, совпадает сама с собой, а соответствующее расстояние равно нулю.
Задача с точкой и плоскостью
Пусть дана точка M(1; -1; 3) и плоскость, которая описывается следующим общим уравнением:
Следует вычислить координаты проекции на плоскость точки и рассчитать расстояние между этими геометрическими объектами.
Для начала построим уравнение прямой, проходящей через М и перпендикулярной указанной плоскости. Оно имеет вид:
(x; y; z) = (1; -1; 3) + α*(-1; 3; -2)
Обозначим точку, где эта прямая пересекает плоскость, M 1 . Равенства для плоскости и прямой должны выполняться, если в них подставить координаты M 1 . Записывая в явном виде уравнение прямой, получаем следующие четыре равенства:
X 1 + 3*y 1 -2*z 1 + 4 = 0;
y 1 = -1 + 3*α;
Из последнего равенства получим параметр α, затем подставим его в предпоследнее и во второе выражение, получаем:
y 1 = -1 + 3*(3-z 1)/2 = -3/2*z 1 + 3,5;
x 1 = 1 - (3-z 1)/2 = 1/2*z 1 - 1/2
Выражение для y 1 и x 1 подставим в уравнение для плоскости, имеем:
1*(1/2*z 1 - 1/2) + 3*(-3/2*z 1 + 3,5) -2*z 1 + 4 = 0
Откуда получаем:
y 1 = -3/2*15/7 + 3,5 = 2/7;
x 1 = 1/2*15/7 - 1/2 = 4/7
Мы определили, что проекция точки M на заданную плоскость соответствует координатам (4/7; 2/7; 15/7).
Теперь рассчитаем расстояние |MM 1 ¯|. Координаты соответствующего вектора равны:
MM 1 ¯(-3/7; 9/7; -6/7)
Искомое расстояние равно:
d = |MM 1 ¯| = √126/7 ≈ 1,6
Три точки проекции
Во время изготовления чертежей часто приходится получать проекции сечений на взаимно перпендикулярные три плоскости. Поэтому полезно рассмотреть, чему будут равны проекции некоторой точки M с координатами (x 0 ; y 0 ; z 0) на три координатные плоскости.
Не сложно показать, что плоскость xy описывается уравнением z = 0, плоскость xz соответствует выражению y = 0, а оставшаяся плоскость yz обозначается равенством x = 0. Нетрудно догадаться, что проекции точки на 3 плоскости будут равны:
для x = 0: (0; y 0 ; z 0);
для y = 0: (x 0 ; 0 ; z 0);
для z = 0: (x 0 ; y 0 ; 0)
Где важно знать проекции точки и ее расстояния до плоскостей?
Определение положения проекции точек на заданную плоскость важно при нахождении таких величин, как площадь поверхности и объем для наклонных призм и пирамид. Например, расстояние от вершины пирамиды до плоскости основания является высотой. Последняя входит в формулу для объема этой фигуры.
Рассмотренные формулы и методики определения проекций и расстояний от точки до прямой и плоскости являются достаточно простыми. Важно лишь запомнить соответствующие формы уравнений плоскости и прямой, а также иметь хорошее пространственное воображение, чтобы успешно их применять.
Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.
Рис.9 Рис.10
В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.
При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.
Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответствующие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 10).
Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а // – на профильной плоскости проекций.
Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.
Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.
При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не менят своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется понаправлению движения часовой стрелки и расположится на одном перепендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х . Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков аа y и а y a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 45 0 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.
Из этого следует:
1. Точка в пространстве удалена:
от горизонтальной плоскости H Z,
от фронтальной плоскости V на величину заданной координаты Y,
от профильной плоскости W на величину координаты.X.
2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):
горизонтальная и фронтальная – перпендикуляру к оси X,
горизонтальная и профильная – перпендикуляру к оси Y,
фронтальная и профильная – перпендикуляру к оси Z.
3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда иожно построить недостающую ее третью проекцию.
Если точка имеет три определенные координаты, то такую точку называют точкой общего положения.
Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.
Рис. 11 Рис. 12
На рисунке 11 дан пространственный чертеж точек частного положения, на рисунке 12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).
Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.
Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .
В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.
На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а́́ ) называют профильной проекцией и обозначают а́́ .
Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.
На рисунке 16 изображено положение проекций а, а́ и а́́ точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.
В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).
На рисунке 16 три проекции а, а́ и а́́ точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:
а и а́ всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;
а́ и а́́ всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;
3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а́́ – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.
При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.
Координаты точки
Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.
Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а˝А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а́А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .
На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:
х = а˝А = Оа х = а у а = a z á;
y = а́А = Оа y = а x а = а z а˝;
z = aA = Oa z = а x а́ = а y а˝.
На эпюре (рис. 16) координаты х и z встречаются по три раза:
х = а z а ́= Оа x = а y а,
z = а x á = Oa z = а y а˝.
Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:
y = Оа у = а х а
и два раза – расположенной горизонтально:
у = Оа у = а z а˝.
Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.
Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:
1) горизонтальной – координатами х и у ,
2) фронтальной – координатами x и z ,
3) профильной – координатами у и z .
Используя координаты х, у и z , можно построить проекции точки на эпюре.
Если точка А задается координатами, их запись определяется так: А (х; у; z ).
При построении проекций точки А нужно проверять выполняемость следующих условий:
1) горизонтальная и фронтальная проекции а и а́ х х ;
2) фронтальная и профильная проекции а́ и а˝ должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;
3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а́ и а˝ имеют общую координату у .
В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.
Когда точка лежит на оси проекций, две ее координаты равны нулю.
Если точка лежит в начале координат, все три ее координаты равны нулю.
Проекции прямой
Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной и фронтальной плоскостях.
На рисунке 17 показаны проекции (а и á, b и b́ ) двух точек А и В. С их помощью определяется положение некоторой прямой АВ . При соединении одноименных проекций этих точек (т. е. а и b, а́ и b́ ) можно получить проекции аb и а́b́ прямой АВ.
На рисунке 18 показаны проекции обеих точек, а на рисунке 19 – проекции проходящей через них прямой линии.
Если проекции прямой определяются проекциями двух ее точек, то они обозначаются двумя рядом поставленными латинскими буквами, соответствующими обозначениям проекций точек, взятых на прямой: со штрихами для обозначения фронтальной проекции прямой или без штрихов – для горизонтальной проекции.
Если рассматривать не отдельные точки прямой, а ее проекции в целом, то данные проекции обозначаются цифрами.
Если некоторая точка С лежит на прямой АВ , ее проекции с и с́ находятся на одноименных проекциях прямой ab и а́b́ . Данную ситуацию поясняет рисунок 19.
Следы прямой
След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20).
Горизонтальным следом прямой называется некоторая точка H , в которой прямая встречается с горизонтальной плоскостью, а фронтальным – точка V , в которой данная прямая встречается с фронтальной плоскостью (рис. 20).
На рисунке 21а изображен горизонтальный след прямой, а ее фронтальный след, – на рисунке 21б.
Иногда также рассматривается профильный след прямой, W – точка пересечения прямой с профильной плоскостью.
Горизонтальный след находится в горизонтальной плоскости, т. е. его горизонтальная проекция h совпадает с этим следом, а фронтальная h́ лежит на оси х. Фронтальный след лежит во фронтальной плоскости, поэтому его фронтальная проекция ν́ совпадает с ним же, а горизонтальная v лежит на оси х.
Итак, H = h , и V = ν́. Следовательно, для обозначения следов прямой можно применять буквы h и ν́.
Различные положения прямой
Прямую называют прямой общего положения , если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпендикулярны осям проекций.
Прямые, которые параллельны одной из плоскостей проекций (перпендикулярны одной из осей). На рисунке 22 показана прямая, которая параллельна горизонтальной плоскости (перпендикулярная оси z), – горизонтальная прямая; на рисунке 23 показана прямая, которая параллельна фронтальной плоскости (перпендикулярна оси у ), – фронтальная прямая; на рисунке 24 показана прямая, которая параллельна профильной плоскости (перпендикулярна оси х ), – профильная прямая. Несмотря на то что каждая из данных прямых образует с одной из осей прямой угол, они не пересекают ее, а только скрещиваются с нею.
Из-за того что горизонтальная прямая (рис. 22) параллельна горизонтальной плоскости, ее фронтальная и профильная проекции будут параллельны осям, определяющим горизонтальную плоскость, т. е. осям х и у . Поэтому проекции áb́ || х и a˝b˝ || у z . Горизонтальная проекция ab может занимать любое положение на эпюре.
У фронтальной прямой (рис. 23) проекции аb || x и a˝b˝ || z , т. е. они перпендикулярны оси у , а потому в этом случае фронтальная проекция а́b́ прямой может занимать произвольное положение.
У профильной прямой (рис. 24) аb || у, а́b || z , и обе они перпендикулярны оси х. Проекция а˝b˝ может располагаться на эпюре любым образом.
При рассмотрении той плоскости, которая проецирует горизонтальную прямую на фронтальную плоскость (рис. 22), можно заметить, что она проецирует эту прямую и на профильную плоскость, т. е. она является плоскостью, которая проецирует прямую сразу на две плоскости проекций – фронтальную и профильную. Исходя из этого ее называют дважды проецирующей плоскостью . Таким же образом для фронтальной прямой (рис. 23) дважды проецирующая плоскость проецирует ее на плоскости горизонтальной и профильной проекций, а для профильной (рис. 23) – на плоскости горизонтальной и фронтальной проекций.
Две проекции не могут определить прямую. Две проекции 1 и 1́ профильной прямой (рис. 25) без уточнения на них проекций двух точек этой прямой не определят положения данной прямой в пространстве.
В плоскости, которая перпендикулярна двум заданным плоскостям симметрии, возможно существование бесчисленного множество прямых, для которых данные на эпюре 1 и 1́ являются их проекциями.
Если точка находится на прямой, то ее проекции во всех случаях лежат на одноименных проекциях этой прямой. Обратное положение не всегда справедливо для профильной прямой. На ее проекциях можно произвольным образом указать проекции определенной точки и не быть уверенным в том, что эта точка лежит на данной прямой.
Во всех трех частных случаях (рис. 22, 23 и 24) положения прямой по отношению к плоскости проекций произвольный ее отрезок АВ , взятый на каждой из прямых, проецируется на одну из плоскостей проекций без искажения, т. е. на ту плоскость, которой он параллелен. Отрезок АВ горизонтальной прямой (рис. 22) дает проекцию в натуральную величину на горизонтальную плоскость (аb = АВ ); отрезок АВ фронтальной прямой (рис. 23) – в натуральную величину на плоскость фронтальной плоскости V (áb́ = AB ) и отрезок АВ профильной прямой (рис. 24) – в натуральную величину на профильную плоскость W (a˝b˝ = АВ), т. е. представляется возможным измерить на чертеже натуральную величину отрезка.
Иначе говоря, с помощью эпюр можно определить натуральные размеры углов, которые рассматриваемая прямая образует с плоскостями проекций.
Угол, который составляет прямая с горизонтальной плос костью Н , принято обозначать буквой α, с фронтальной плоскостью – буквой β, с профильной плоскостью – буквой γ.
Любая из рассматриваемых прямых не имеет следа на параллельной ей плоскости, т. е. горизонтальная прямая не имеет горизонтального следа (рис. 22), фронтальная прямая не имеет фронтального следа (рис. 23), а профильная прямая – профильного следа (рис. 24).