Производная синуса: (sin x)′. Производная синуса: (sin x)′ Производная синуса x 2
Приведем сводную таблицу для удобства и наглядности при изучении темы.
Константа y = C Степенная функция y = x p (x p) " = p · x p - 1 |
Показательная функция y = a x (a x) " = a x · ln a В частности, при a = e имеем y = e x (e x) " = e x |
Логарифмическая функция (log a x) " = 1 x · ln a В частности, при a = e имеем y = ln x (ln x) " = 1 x |
Тригонометрические функции (sin x) " = cos x (cos x) " = - sin x (t g x) " = 1 cos 2 x (c t g x) " = - 1 sin 2 x |
Обратные тригонометрические функции (a r c sin x) " = 1 1 - x 2 (a r c cos x) " = - 1 1 - x 2 (a r c t g x) " = 1 1 + x 2 (a r c c t g x) " = - 1 1 + x 2 |
Гиперболические функции (s h x) " = c h x (c h x) " = s h x (t h x) " = 1 c h 2 x (c t h x) " = - 1 s h 2 x |
Разберем, каким образом были получены формулы указанной таблицы или, иначе говоря, докажем вывод формул производных для каждого вида функций.
Производная постоянной
Доказательство 1Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x 0 = x , где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f (x) = C . Составим запись предела отношения приращения функции к приращению аргумента при ∆ x → 0:
lim ∆ x → 0 ∆ f (x) ∆ x = lim ∆ x → 0 C - C ∆ x = lim ∆ x → 0 0 ∆ x = 0
Обратите внимание, что под знак предела попадает выражение 0 ∆ x . Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.
Итак, производная постоянной функции f (x) = C равна нулю на всей области определения.
Пример 1
Даны постоянные функции:
f 1 (x) = 3 , f 2 (x) = a , a ∈ R , f 3 (x) = 4 . 13 7 22 , f 4 (x) = 0 , f 5 (x) = - 8 7
Решение
Опишем заданные условия. В первой функции мы видим производную натурального числа 3 . В следующем примере необходимо брать производную от а , где а - любое действительное число. Третий пример задает нам производную иррационального числа 4 . 13 7 22 , четвертый - производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби - 8 7 .
Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)
f 1 " (x) = (3) " = 0 , f 2 " (x) = (a) " = 0 , a ∈ R , f 3 " (x) = 4 . 13 7 22 " = 0 , f 4 " (x) = 0 " = 0 , f 5 " (x) = - 8 7 " = 0
Производная степенной функции
Переходим к степенной функции и формуле ее производной, имеющей вид: (x p) " = p · x p - 1 , где показатель степени p является любым действительным числом.
Доказательство 2
Приведем доказательство формулы, когда показатель степени – натуральное число: p = 1 , 2 , 3 , …
Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:
(x p) " = lim ∆ x → 0 = ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x
Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:
(x + ∆ x) p - x p = C p 0 + x p + C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + + C p p - 1 · x · (∆ x) p - 1 + C p p · (∆ x) p - x p = = C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + C p p - 1 · x · (∆ x) p - 1 + C p p · (∆ x) p
Таким образом:
(x p) " = lim ∆ x → 0 ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x = = lim ∆ x → 0 (C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + C p p - 1 · x · (∆ x) p - 1 + C p p · (∆ x) p) ∆ x = = lim ∆ x → 0 (C p 1 · x p - 1 + C p 2 · x p - 2 · ∆ x + . . . + C p p - 1 · x · (∆ x) p - 2 + C p p · (∆ x) p - 1) = = C p 1 · x p - 1 + 0 + 0 + . . . + 0 = p ! 1 ! · (p - 1) ! · x p - 1 = p · x p - 1
Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.
Доказательство 3
Чтобы привести доказательство для случая, когда p - любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.
Рассмотрим два случая: когда x положительны и когда x отрицательны.
Итак, x > 0 . Тогда: x p > 0 . Логарифмируем равенство y = x p по основанию e и применим свойство логарифма:
y = x p ln y = ln x p ln y = p · ln x
На данном этапе получили неявно заданную функцию. Определим ее производную:
(ln y) " = (p · ln x) 1 y · y " = p · 1 x ⇒ y " = p · y x = p · x p x = p · x p - 1
Теперь рассматриваем случай, когда x – отрицательное число.
Если показатель p есть четное число, то степенная функция определяется и при x < 0 , причем является четной: y (x) = - y ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p · x p - 1
Тогда x p < 0 и возможно составить доказательство, используя логарифмическую производную.
Если p есть нечетное число, тогда степенная функция определена и при x < 0 , причем является нечетной: y (x) = - y (- x) = - (- x) p . Тогда x p < 0 , а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:
y " (x) = (- (- x) p) " = - ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p · x p - 1
Последний переход возможен в силу того, что если p - нечетное число, то p - 1 либо четное число, либо нуль (при p = 1), поэтому, при отрицательных x верно равенство (- x) p - 1 = x p - 1 .
Итак, мы доказали формулу производной степенной функции при любом действительном p .
Пример 2
Даны функции:
f 1 (x) = 1 x 2 3 , f 2 (x) = x 2 - 1 4 , f 3 (x) = 1 x log 7 12
Определите их производные.
Решение
Часть заданных функций преобразуем в табличный вид y = x p , опираясь на свойства степени, а затем используем формулу:
f 1 (x) = 1 x 2 3 = x - 2 3 ⇒ f 1 " (x) = - 2 3 · x - 2 3 - 1 = - 2 3 · x - 5 3 f 2 " (x) = x 2 - 1 4 = 2 - 1 4 · x 2 - 1 4 - 1 = 2 - 1 4 · x 2 - 5 4 f 3 (x) = 1 x log 7 12 = x - log 7 12 ⇒ f 3 " (x) = - log 7 12 · x - log 7 12 - 1 = - log 7 12 · x - log 7 12 - log 7 7 = - log 7 12 · x - log 7 84
Производная показательной функции
Доказательство 4Выведем формулу производной, взяв за основу определение:
(a x) " = lim ∆ x → 0 a x + ∆ x - a x ∆ x = lim ∆ x → 0 a x (a ∆ x - 1) ∆ x = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = 0 0
Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z = a ∆ x - 1 (z → 0 при ∆ x → 0). В таком случае a ∆ x = z + 1 ⇒ ∆ x = log a (z + 1) = ln (z + 1) ln a . Для последнего перехода использована формула перехода к новому основанию логарифма.
Осуществим подстановку в исходный предел:
(a x) " = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln (z + 1) = = a x · ln a · lim ∆ x → 0 1 ln (z + 1) 1 z = a x · ln a · 1 ln lim ∆ x → 0 (z + 1) 1 z
Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:
(a x) " = a x · ln a · 1 ln lim z → 0 (z + 1) 1 z = a x · ln a · 1 ln e = a x · ln a
Пример 3
Даны показательные функции:
f 1 (x) = 2 3 x , f 2 (x) = 5 3 x , f 3 (x) = 1 (e) x
Необходимо найти их производные.
Решение
Используем формулу производной показательной функции и свойства логарифма:
f 1 " (x) = 2 3 x " = 2 3 x · ln 2 3 = 2 3 x · (ln 2 - ln 3) f 2 " (x) = 5 3 x " = 5 3 x · ln 5 1 3 = 1 3 · 5 3 x · ln 5 f 3 " (x) = 1 (e) x " = 1 e x " = 1 e x · ln 1 e = 1 e x · ln e - 1 = - 1 e x
Производная логарифмической функции
Доказательство 5Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:
(log a x) " = lim ∆ x → 0 log a (x + ∆ x) - log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x · log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a
Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim ∆ x → 0 1 + ∆ x x x ∆ x = e является верным в соответствии со вторым замечательным пределом.
Пример 4
Заданы логарифмические функции:
f 1 (x) = log ln 3 x , f 2 (x) = ln x
Необходимо вычислить их производные.
Решение
Применим выведенную формулу:
f 1 " (x) = (log ln 3 x) " = 1 x · ln (ln 3) ; f 2 " (x) = (ln x) " = 1 x · ln e = 1 x
Итак, производная натурального логарифма есть единица, деленная на x .
Производные тригонометрических функций
Доказательство 6Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.
Согласно определению производной функции синуса, получим:
(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x
Формула разности синусов позволит нам произвести следующие действия:
(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x = = lim ∆ x → 0 2 · sin x + ∆ x - x 2 · cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2
Наконец, используем первый замечательный предел:
sin " x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x
Итак, производной функции sin x будет cos x .
Совершенно также докажем формулу производной косинуса:
cos " x = lim ∆ x → 0 cos (x + ∆ x) - cos x ∆ x = = lim ∆ x → 0 - 2 · sin x + ∆ x - x 2 · sin x + ∆ x + x 2 ∆ x = = - lim ∆ x → 0 sin ∆ x 2 · sin x + ∆ x 2 ∆ x 2 = = - sin x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = - sin x
Т.е. производной функции cos x будет – sin x .
Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:
t g " x = sin x cos x " = sin " x · cos x - sin x · cos " x cos 2 x = = cos x · cos x - sin x · (- sin x) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g " x = cos x sin x " = cos " x · sin x - cos x · sin " x sin 2 x = = - sin x · sin x - cos x · cos x sin 2 x = - sin 2 x + cos 2 x sin 2 x = - 1 sin 2 x
Производные обратных тригонометрических функций
Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.
Производные гиперболических функций
Доказательство 7Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:
s h " x = e x - e - x 2 " = 1 2 e x " - e - x " = = 1 2 e x - - e - x = e x + e - x 2 = c h x c h " x = e x + e - x 2 " = 1 2 e x " + e - x " = = 1 2 e x + - e - x = e x - e - x 2 = s h x t h " x = s h x c h x " = s h " x · c h x - s h x · c h " x c h 2 x = c h 2 x - s h 2 x c h 2 x = 1 c h 2 x c t h " x = c h x s h x " = c h " x · s h x - c h x · s h " x s h 2 x = s h 2 x - c h 2 x s h 2 x = - 1 s h 2 x
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Производная
Вычисление производной от математической функции (дифференцирование) является очень частой задачей при решении высшей математики. Для простых (элементарных) математических функций это является довольно простым делом, поскольку уже давно составлены и легко доступны таблицы производных для элементарных функций. Однако, нахождение производной сложной математической функции не является тривиальной задачей и часто требует значительных усилий и временных затрат.
Найти производную онлайн
Наш онлайн сервис позволяет избавиться от бессмысленных долгих вычислений и найти производную онлайн за одно мгновение. Причем воспользовавшись нашим сервисом, расположенным на сайте www.сайт , вы можете вычислить производную онлайн как от элементарной функции, так и от очень сложной, не имеющей решения в аналитическом виде. Главными преимуществами нашего сайта по сравнению с другими являются: 1) нет жестких требований к способу ввода математической функции для вычисления производной (например при вводе функции синус икс вы можете ввести ее как sin x либо sin(x) либо sin[x] и т.д.); 2) вычисление производной онлайн происходит мгновенно в режиме онлайн и абсолютно бесплатно ; 3) мы позволяем находить производную от функции любого порядка , изменить порядок производной очень легко и понятно; 4) мы позволяем найти производную почти от любой математической функции онлайн, даже очень сложной, недоступной для решения другими сервисами. Выдаваемый ответ всегда точен и не может содержать ошибки.
Использование нашего сервера позволит вам 1) вычислить производную онлайн за вас, избавив от длительных и утомительных вычислений, в ходе которых вы могли бы допустить ошибку или опечатку; 2) если вы вычисляете производную математической функции самостоятельно, то мы предоставляем вам возможность сравнить полученный результат с вычислениями нашего сервиса и убедиться в верности решения либо отыскать закравшуюся ошибку; 3)пользоваться нашим сервисом вместо использования таблиц производных простых функций, где зачастую необходимо время для нахождения нужной функции.
Всё что от вас требуется, чтобы найти производную онлайн - это воспользоваться нашим сервисом на
Представлено доказательство и вывод формулы для производной синуса - sin(x). Примеры вычисления производных от sin 2x, синуса в квадрате и кубе. Вывод формулы для производной синуса n-го порядка.
СодержаниеСм. также: Синус и косинус - свойства, графики, формулы
Производная по переменной x от синуса x равна косинусу x:
(sin
x)′ = cos
x
.
Доказательство
Для вывода формулы производной синуса, мы воспользуемся определением производной:
.
Чтобы найти этот предел, нам нужно преобразовать выражение таким образом, чтобы свести его к известным законам, свойствам и правилам. Для этого нам нужно знать четыре свойства.
1)
Значение первого замечательного предела :
(1)
;
2)
Непрерывность функции косинус :
(2)
;
3)
Тригонометрические формулы . Нам понадобится следующая формула:
(3)
;
4)
Арифметические свойства предела функции:
Если и ,
то
(4)
.
Применяем эти правила к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим формулу
(3)
.
В нашем случае
;
.
Тогда
;
;
;
.
Теперь сделаем подстановку .
При ,
.
Применим первый замечательный предел (1):
.
Сделаем такую же подстановку и используем свойство непрерывности (2):
.
Поскольку пределы, вычисленные выше, существуют, то применяем свойство (4):
.
Формула производной синуса доказана.
Примеры
Рассмотрим простые примеры нахождения производных от функций, содержащих синус. Мы найдем производные от следующих функций:
y = sin 2x; y = sin 2
x
и y = sin 3
x
.
Пример 1
Найти производную от sin 2x .
Сначала найдем производную от самой простой части:
(2x)′ = 2(x)′ = 2 · 1 = 2.
Применяем .
.
Здесь .
(sin 2x)′ = 2 cos 2x.
Пример 2
Найти производную от синуса в квадрате:
y = sin 2
x
.
Перепишем исходную функцию в более понятном виде:
.
Найдем производную от самой простой части:
.
Применяем формулу производной сложной функции.
.
Здесь .
Можно применить одну из формул тригонометрии. Тогда
.
Пример 3
Найти производную от синуса в кубе:
y = sin 3
x
.
Производные высших порядков
Заметим, что производную от sin x
первого порядка можно выразить через синус следующим образом:
.
Найдем производную второго порядка, используя формулу производной сложной функции :
.
Здесь .
Теперь мы можем заметить, что дифференцирование sin x
приводит к увеличению его аргумента на .
Тогда производная n-го порядка имеет вид:
(5)
.
Докажем это, применяя метод математической индукции.
Мы уже проверили, что при , формула (5) справедлива.
Предположим, что формула (5) справедлива при некотором значении . Докажем, что из этого следует, что формула (5) выполняется для .
Выпишем формулу (5) при :
.
Дифференцируем это уравнение, применяя правило дифференцирования сложной функции:
.
Здесь .
Итак, мы нашли:
.
Если подставить ,
то эта формула примет вид (5).
Формула доказана.
См. также: