Отношение делимости на множестве натуральных чисел. Делимость натуральных чисел


Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что а = bq.

В этом случае число b называютделителем числа а , а число а - кратным числа b.

Например , 24 делится на 8, так как существует такое q = 3, что 24 = 8×3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8.

В том случае, когда а делится на b, пишут: а M b. Эту запись часто читают и так: «а кратно b».

Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства a = 1 × а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т. е. если а M b, то b £ а.

Доказательство. Так как а M b, то существует такое qÎ N, что а = bq и, значит, а - b = bq - b = b ×(q - 1). Поскольку qÎ N, то q ³ 1. . Тогда b ×(q - 1) ³ 0 и, следовательно, и b £ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. Они образуют конечное множество {1,2,3,4,6,9, 12, 18,36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое натуральное число, большее 1, которое имеет только два делителя - единицу и само это число.

Например , 13 – простое, поскольку у него только два делителя: 1 и 13.

Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1, 2 и 4. Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, -их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, .... и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,... .

Нам известно, что отношение делимости на множестве N обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справедливо ра­венство а = а× 1. Так как 1 Î N то, по определению отношения дели­мости, аMа.

Теорема 3 . Отношение делимости антисимметрично, т.е. если а M b и а ¹ b, то .

Доказательство. Предположим противное, т. е. что bMа. Но тогда а£ b, согласно теореме, рассмотренной выше.

По условию а M b и а ¹ b. Тогда, по той же теореме, b £ а.

Неравенства а £ b и b £ а.будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следовательно, наше предпо­ложение неверное и теорема доказана.

Теорема 4. Отношение делимости транзитивно, т.е. если а M b и b M с, то а M с.

Доказательство. Так как а M b, q, что а = b q , а так как bM с, то существует такое натуральное число р , что b = ср. Но тогда имеем: а = b q = (ср)q = с(рq). Число рq - натуральное. Значит, по определению отношения делимости, а. M с.

Теорема 5 (признак делимости суммы). Если каждое из натураль­ных чисел а 1, а 2 ,…а п делится на натуральное число b, то и их сумма а 1 + а 2 + … + а п делится на это число.

Например , не производя вычислений, можно сказать, что сумма 175 + 360 +915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и а 2 де­лятся на b и а 1 ³ а 2 , то их разность а 1 - а 2 делится на b.

Теорема 7 (признак делимости произведения). Если число а де­лится на b, то произведение вида ах, где х е N. делится на b.

Из теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.

Например , произведение 24×976×305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится.

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так как 34:2,376: 2,124: 2,но 125 не делится на 2.

Теорема 9. Если в произведении аb множитель а делится на натуральное число т, а множитель b делится на натуральное число п то а b делится на тп.

Справедливость этого утверждения вытекает из теоремы о делимо­сти произведения.

Теорема 10. Если произведение ас делится на произведение bс, причем с - натуральное число, то и а делится на b.

Определение. Пусть даны натуральные числа а и b. Гово­рят, что число а делится на число b, если существует та­кое натуральное число q, что a = bq.

В этом случае число b называют делителем числа а, а число а - кратным числа b.

Например, 24 делится на 8, так как существует такое q =3, что 24 = 8·3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8. В том случае, когда а делится на b, пишут: а: . b. Эту запись »« читают и так: «а кратно b». Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 -делитель, но 5 не является делителем числа 18. Если 18 делят 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства а = 1·а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т.е. если

а: . b, то b < а.

Доказательство. Так как а: . b, то существует такое q Є N,что a = bq u, значит, a-b = bq – b= b·(q - 1). Поскольку q Є N,тоq≥ 1. Тогда b· (q - 1) ≥ 0 и, следовательно, b ≤ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. образуют конечное множество {1,2,3,4,6,9,12,18,36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое нату­ральное число, которое имеет только два делителя - единицу и само это число.

Например, число 13- простое, поскольку, у него только два делителя: 1 и 13.



Определение. Составным числом называется такое нату­ральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1,2 и 4.

Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, - их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, …, и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,....

Нам известно, что отношение делимости обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимо­сти, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справед­ливо равенство а = а·1. Так как 1 Є N, то, по определению отношения делимости, а: . а.

Теорема 3. Отношение делимости антисимметрично, т.е. если а: . b и а ≠ b,

то b ⁞͞ a.

Доказательство. Предположим противное, т.е. что ba. Но тогда а ≤ b, согласно теореме, рассмотренной выше.

По условию и а . b и а ≠ b. Тогда, по той же теореме, b ≤ а.

Неравенства а ≤ b и b ≤ а будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следова­тельно, наше предположение неверное и теорема доказана.

Теорема 4 . Отношение делимости транзитивно, т.е. если а b и b с, то а с.

Доказательство. Так как а: . b, то существует такое нату­ральное число q, что a = bq, а так как b с, то существует такое натуральное число р, что b = ср. Но тогда имеем: a = bq = (cp)q = c(pq)- Число pq - натуральное. Значит, по определе­нию отношения делимости,

а с.

Теорема 5 (признак делимости суммы). Если каждое из натуральных чисел а 1 , а 2 , ...,а п делится на натуральное число b, то и их сумма a 1 + а 2 + ... + а n делится на это число.

Доказательство. Так как а 1 b, то существует такое на­туральное число q 1 , что а 1 =bq 1 . Так как а 2 b, то существует такое натуральное число q 2 , что а 2 = bq 2 . Продолжая рассуж­дения, получим, что если а n: . b, то существует такое натуральное число q n , что а п = bq n . Эти равенства позволяют преобразовать сумму а 1 + а 2 + ... +а п в сумму вида bq 1 + bq 2 + ... + bq n . Вынесем за скобки общий множитель b, а получившееся в скобках натуральное число q 1 + q 2 + ... + q n обозначим буквой q. Тогда a 1 + a 2 + ... + a n = b(q 1 + q 2 +... + q n) = bq, т.е. сумма а 1 + а 2 +… + а п оказалась представленной в виде произведения числа b и некоторого натурального числа q. А это значит, что сумма а 1 + а 2 +… + а п делится на b, что и требовалось доказать.

Например, не производя вычислений, можно сказать, что 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и а 2 делятся на b и а 1 ≥ а 2 , то их разность а 1 - а 2 делится на b.

Доказательство этой теоремы аналогично доказательству признака делимости суммы.

Теорема 7 (признак делимости произведения). Если число а делится на b, то произведениe вида ах, где х Є N, делитcя на b.

Доказательство. Так как а: . b, то существует такое натуральное число q, что a = bq. Умножим обе части этого равенства на натуральное число х. Тогда ах=(bq)x, откуда на основании свойства ассоциативности умножения (bq)x = b(qx)и, значит, ax = b(qx), где qx - натуральное число. Согласно определению отношения делимости, ax: . b, что и требовалось доказать.

Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b. Например, произведение 24·976·305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся cумма на число b не делится.

Доказательство. Пусть s = а 1 + а г + ... + а п +" с и известно, что а 1: . B, а 2: . B,

а 3: . b, … а n: . b, но с: . b. Докажем, что тогда s: . b

Предположим противное, т.е. Пусть s: . b. Преобразуем сумму s к виду с = s- (а 1 + а 2 + + а n ). Так как s: . b по предположению, (а 1 + а 2 + + а n ) : . b согласно признаку делимости суммы, то по теореме делимости разности с: .b

Пришли к противоречию с тем, что дано. Следовательно, s: . b.

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так 34: .2,376: .2,124: .2, но 125 не делится на 2.

Теорема 9 . Если в произведении ab множитель a делится на натуральное число т, а множитель b делится на натуральное число n,то ab делится на mn.

Справедливость этого утверждения вытекает из теоремы о делимости произведения.

Теорема 10. Если произведение ас делится на произведе­ние bс, причем с - натуральное число, то и а делится на b.

Доказательство. Так как ас делится на bc, то существует такое натуральное число q, что ас = (bc)q, откуда ас = (bq)c и, следовательно, а = bq, т.е. а : .b.

Упражнения

1. Объясните, почему число 15 является делителем числа 60 и не является делителем числа 70.

2. Постройте граф отношения «быть делителем данного числа», заданного на множестве Х = {2, 6,. 12, 18, 24}. Как от­ражены на этом графе свойства данного отношения?

3. Известно, что число 24 - делитель числа 96, а число 96 -делитель числа 672. Докажите, что число 24 делитель числа 672, не выполняя деления.

4. Запишите множество делителей числа.

а) 24; 6)13; в) 1.

5 .На множестве X ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; 12} задано отношение «иметь одно и то же число делителей». Является ли оно отношением эквивалентности?

6 .Постройте умозаключение, доказывающее, что:

а) число 19 является простым;

б) число 22 является составным.

7. Докажите или опровергните следующие утверждения:

а) Если сумма двух слагаемых делится на некоторое число, то и каждое слагаемое делится на это число.

б) Если одно из слагаемых суммы не делится на некоторое число, то и сумма не делится на это число.

в) Если ни одно слагаемое не делится на некоторое число, то и сумма не делится на это число.

г) Если одно из слагаемых суммы делится на некоторое число, а другое не делится на это число, то и сумма не делится на это число.

8. Верно ли, что:

а) а: . ти b: . n =>ab: .mn

б) а: .п и b: .n => ab: .n;

в) ab: .n => а: .п или b: .n.

Говорят, что целое число a делится на целое число b, отличное от 0, если такое целое число с, определенное однозначно, что a=b*c.

Свойства: евклид лемма арифметика позиционный

  • 1) Отношение делимости рефлексивно, т.е. . Действительно, число 1, а=а*1
  • 2) Отношение делимости транзитивно, т.е. если

Из этого следует, что a=(c*k)*t=c*(k*t)=c*m

А это значит, что ас

  • 3) Если аb, то (-a)b, (-a)(-b), a(-b)
  • 4) Если ac и bc, то (ab)c

a=c*t, b=c*k (ab)=c*tc*k=c*(tk)(ab)c

НО: обратное утверждение неверно.

  • 5) Если ab и cZ (произвольное число), то (a*c)b
  • 6) Если каждое из чисел a1, a2…an делится на b, то (r1a1+…+rnan)b, где r1,…,rnZ
  • 7) Если ac, b неc, то (a+b)нес

Пусть (a+b)=t и tc, t-a=b это противоречит условию.

  • 8) 0на любое число, 0
  • 9) Всякое целое число1, т.к. всякое число можно записать в виде а=1*а
  • 10) На 0 делить нельзя: а=0*с, если а0, то это равенство неверно; если а=0, то имеем 0=0*с, сZ - в этом случае нарушается условие единственности определения с.
  • 11) Если ab,то. a=b*c, где b,cZ

Теорема о делении с остатком

Разделить целое число а на целое число b0, это значит найти такие целые числа q и r, что a=bq+r, 0

Теорема: в кольце целых чисел всегда возможно выполнение деления с остатком и причем единственным образом.

Доказательство:

1) Существование:

Рассмотрим целые числа кратные b. Это числа -2b,-b,b,2b… и пусть bq-последнее кратное b, не превышающее число а, тогда оно является наибольшим среди записанных кратных. В этом случае b(q+1)>a. Получили:

bqa

Пусть a-bq=r. Тогда получим: a=bq+r, причем 0r<

Это доказательство проходит для случая b>0.

Теперь пусть b<0,тогда (-b)>0.

Тогда a=(-b)*q+r, a=b*(-q)+r, где 0r<-b, -b=, где b<0, 0r<

Таким образом, деление с остатком возможно при любых а и b0

2) Единственность:

Предположим, что это не так:

a=bq1+r1 и a=bq2+r2;

b(q1-q2)=r2-r1; где 0r1,r2<;

Где 0r2-r1<, r2>r1.

Равенство возможно, если, =>q1=q2, r1=r2.

Следовательно, деление с остатком однозначно: q-неполное частное, r-остаток.

Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что а = bq.

В этом случае число b называютделителем числа а , а число а - кратным числа b.

Например , 24 делится на 8, так как существует такое q = 3, что 24 = 8×3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8.

В том случае, когда а делится на b, пишут: а M b. Эту запись часто читают и так: «а кратно b».

Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства a = 1 × а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т. е. если а M b, то b £ а.

Доказательство. Так как а M b, то существует такое qÎ N, что а = bq и, значит, а - b = bq - b = b ×(q - 1). Поскольку qÎ N, то q ³ 1. . Тогда b ×(q - 1) ³ 0 и, следовательно, и b £ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. Они образуют конечное множество {1,2,3,4,6,9, 12, 18,36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое натуральное число, большее 1, которое имеет только два делителя - единицу и само это число.

Например , 13 – простое, поскольку у него только два делителя: 1 и 13.

Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1, 2 и 4. Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, -их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, .... и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,... .

Нам известно, что отношение делимости на множестве N обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справедливо ра­венство а = а× 1. Так как 1 Î N то, по определению отношения дели­мости, аMа.

Теорема 3 . Отношение делимости антисимметрично, т.е. если а M b и а ¹ b, то .

Доказательство. Предположим противное, т. е. что bMа. Но тогда а£ b, согласно теореме, рассмотренной выше.

По условию а M b и а ¹ b. Тогда, по той же теореме, b £ а.

Неравенства а £ b и b £ а.будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следовательно, наше предпо­ложение неверное и теорема доказана.

Теорема 4. Отношение делимости транзитивно, т.е. если а M b и b M с, то а M с.

Доказательство. Так как а M b, q, что а = b q , а так как bM с, то существует такое натуральное число р , что b = ср. Но тогда имеем: а = b q = (ср)q = с(рq). Число рq - натуральное. Значит, по определению отношения делимости, а. M с.

Теорема 5 (признак делимости суммы). Если каждое из натураль­ных чисел а 1, а 2 ,…а п делится на натуральное число b, то и их сумма а 1 + а 2 + … + а п делится на это число.

Например , не производя вычислений, можно сказать, что сумма 175 + 360 +915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и а 2 де­лятся на b и а 1 ³ а 2 , то их разность а 1 - а 2 делится на b.

Теорема 7 (признак делимости произведения). Если число а де­лится на b, то произведение вида ах, где х е N. делится на b.

Из теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.

Например , произведение 24×976×305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится.

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так как 34:2,376: 2,124: 2,но 125 не делится на 2.

Теорема 9. Если в произведении аb множитель а делится на натуральное число т, а множитель b делится на натуральное число п то а b делится на тп.

Справедливость этого утверждения вытекает из теоремы о делимо­сти произведения.

Теорема 10. Если произведение ас делится на произведение bс, причем с - натуральное число, то и а делится на b.

Конец работы -

Эта тема принадлежит разделу:

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы

При аксиоматическом построении теории по существу все утверж дения выводятся путем доказательства из аксиом поэтому к системе аксиом предъявляются.. система аксиом называется непротиворечивой если из нее нельзя логически.. если система аксиом не обладает этим свойством она не может быть пригодной для обоснования научной теории..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Количественные натуральные числа. Счет
Аксиоматическая теория описывает натуральное число как эле­мент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматик

Вопросы для самоконтроля
1. Назовите виды множеств, дайте им характеристику. Какие можно производить операции над множествами? 2. Что такое «число», «цифра», «счет»? 3. В чем связь и различие счета и изме


Основная литература; Дополнительная литература Введение. Введя понятие отрезка натурального ряда, мы выяснил

Теоретико-множественный смысл суммы
Сложение целых неотрицательных чисел связано с объединением конечных непересекающихся множеств. Например, если множество А содержит 5 элементов, а множество В - 4 элемента и пересечен


В аксиоматической теории вычитание натуральных чисел определено как операция, обратная сложению: а – b = с Û ($ сÎN) b + с = а. Вычитание целых неотрицательных чисел определяет

Теоретико-множественный смысл произведения
Определение умножения натуральных чисел в аксиоматической теории основывается на понятии отношения «непосредственно следовать за» и сложении. В школьном курсе математики используется другое определ

Теоретико-множественный смысл частного натуральных чисел
В аксиоматической теории деление определяется как операция, обратная умножению, поэтому между делением и умножением устанавливается тесная взаимосвязь. Если а× b = с, то, зная произведение с

Позиционные и непозиционные системы исчисления
Содержание 1. Позиционные и непозиционные системы счисления. 2. Запись числа в десятичной системе счисления. Основная литература ;

Язык для наименования, записи чисел и выполнения действий над ними называют системой счисления
Называть числа и вести счет люди научились еще до появления письменности. В этом им помогали, прежде всего, пальцы рук и ног. Издревле употреблялся еще такой вид инструментального счета, как деревя

Запись числа в десятичной системе счисления
Как известно, в десятичной системе счисления для записи чисел пользуется 10 знаков (цифр): 0, 1,2, 3, 4, 5, 6, 7, 8, 9. Из них образую конечные последовательности, которые являются краткими записям

Алгоритм сложения
Сложение однозначных чисел можно выполнить, основываясь на определении этого действия, но чтобы всякий раз не обращаться к определению, все суммы, которые получаются при сложении однозначных чисел,

Алгоритм вычитания
Вычитание однозначного числа b из однозначного или двузначного числа а, не превышающего 18, сводится к поиску такого числа с, что b + с = а, и происходит с учетом таблицы сложения однозначных чисел

Описанный процесс позволяет сформулировать в общем виде алгоритм вычитания чисел в десятичной системе счисления
1. Записываем вычитаемое под уменьшаемым так, чтобы соответствующие разряды находились друг под другом. 2. Если цифра в разряде единиц вычитаемого не превосходит соответствующей цифры умен

Алгоритм умножения
Умножение однозначных чисел можно выполнить, основываясь на определении этого действия. Но чтобы всякий раз не обращаться к определению, все произведения однозначных чисел записывают в особую табли

Алгоритм деления
Когда речь идет о технике деления чисел, то этот процесс рассматривают как действие деления с остатком: разделить целое неотрицательное число а на натуральное число b - это значит найти

Обобщением различных случаев деления целого неотрицательного числа а на натуральное число b является следующий алгоритм деления уголком
1. Если а =b, то частное q = 1, остаток r = 0. 2. Если а >b и число разрядов в числах а и b одинаково, то частное q находим перебором, последовательно умножая b на 1, 2, 3, 4, 5, 6, 7,


4. Простые числа. 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел. Основная литература ; Дополнительн

Признаки делимости
Рассмотренные в свойства отношения делимости позволяют доказать известные признаки делимости чисел, записанных в десятич­ной системе счисления, на 2, 3, 4, 5, 9. Признаки делимости позволя

Наименьшее общее кратное и наибольший общий делитель
Рассмотрим известные из школьного курса математики понятия наименьшего общего кратного и наибольшего общего делителя натуральных чисел, сформулируем их основные свойства, опустив все доказательства

Простые числа
Простые числа играют большую роль в математике - по существу они являются «кирпичами», из которых строятся составные числа. Это утверждается в теореме, называемой основной теоремой арифмет

Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
Рассмотрим сначала способ, основанный на разложении данных чисел на простые множители. Пусть даны два числа 3600 и 288. Представим их в каноническом виде: 3600 = 24×3

О расширении множества натуральных чисел
Содержание 1. Понятие дроби. 2. Положительные рациональные числа. 3. Запись положительных рациональных чисел в виде десятичных дробей. 4. Действительные ч

Понятие дроби
Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 1). При измерении оказалос

Положительные рациональные числа
Отношение равенства является отношением эквивалентностинамножестве дробей, поэтому оно порождает на нем классы эквивалентности. В каждом таком классе содержатся равные междусобой дроби. На

Сложение положительных рациональных чисел коммутативно и ассоциативно,
("а, b Î Q+) а + b= b + а; ("а, b, с Î Q+) (а + b)+ с = а + (b+ с) Прежде чем сформулировать определе

Запись положительных рациональных чисел в виде десятичных дробей
Впрактической деятельности широко используются дроби, знаменатели которых являются степенями 10. Их называют десятичными. Определение. Десят

Действительные числа
Одним из источников появления десятичных дробей является деление натуральных чисел, другим - измерение величин. Выясним, например, как могут получиться десятичные дроби при измерении длины отрезка.

Теоретико-множественный смысл разности
8. Отношения «больше на» и «меньше на». 9. Правила вычитания числа из суммы и суммы из числа. 10. Из истории возникновения и развития способов записи натуральных чисел и нуля.

Множество положительных рациональных чисел как расширение множества натуральных чисел
27. Запись положительных рациональных чисел в виде десятичных дробей. 28. Действительные числа. МОДУЛЬ 4. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ВЕЛИЧ

Понятие положительной скалярной величины и ее измерения
Рассмотрим два высказывания, в которых используется слово «длина»: 1) Многие окружающие нас предметы имеют длину. 2) Стол имеет длину. В первом предложении утверждается,

Лекция 4. Делимость на множестве целых неотрицательных чисел

1. Понятие отношения делимости, его свойства.

2. Признаки делимости суммы, разности, произведения.

3. Признаки делимости на 2, 3, 4, 5, 9 (два доказать).

В начальном курсе математики делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются.

Отношение делимости и его свойства

Рассмотрим отношение делимости на множестве целых неотрицательных чисел.

Определение 1. Пусть даны целые неотрицательные числа а и b . Говорят, что число а b , если существует такое целое неотрицательное число q , что а=bq . В этом случае число b называют делителем числа а , а число а - кратным числа b.

Обознаение: а b и говорят а кратно b , а b называют делителем числа а .

Заметим, что понятие "делитель данного числа" следует отличать от понятия "делитель", обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия "делитель" и "делитель данного числа" совпадают.

Замечание. Из определения 1 и равенства а=1а , следует, что 1 является делителем любого целого неотрицательного числа.



Свойства отношения делимости:

Отношение делимости рефлексивно, антисимметрично, транзитивно.

Теорема 1. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя
.

Доказательство:

Для справедливо равенство а=а 1. Т.к. 1 , то по опр. 1 .

Теорема 2. Отношение делимости антисимметрично, т. е.

Доказательство (методом от противного): Предположим, что
. Тогда очевидно, что b≥a. Но по условию
и значит а≥b. Выполнение этих неравенств возможно только при а=b, что противоречит условию. Следовательно, наше предположение неверно и справедливость свойства установлена.

Теорема 3. Отношение делимости транзитивно, то есть

Доказательство:

Т.к.
, то по опр.1 . Аналогично, т.к. b с, то .

Тогда a=bq=(cp)q=c(pq). Число рq- натуральное. Это означает по опр.1, что а с.

Таким образом, отношение делимости на множестве N, обладая свойствами рефлексивности, антисимметричности и транзитивности, является отношением нестрогого порядка.

Делимость суммы, разности, произведения целых неотрицательных чисел

Теорема 4 (признак делимости суммы): Если каждое слагаемое суммы делится на натуральное число b, то и вся сумма делится на это число, то есть

Доказательство: Пусть
. Тогда существуют q 1 ,q 2 ,…q n
N такие, что выполняются равенства: а 1 =bq 1 , а 2 =bq 2 , …, а 1 n = bq n . Из этих равенств следует, что а 1 +а 2 +…а n =bq 1 +bq 2 +…+bq n =b(q 1 +q 2 +…+q n), где q 1 +q 2 +…+q n =q
N 0 . По определению отношения делимости это означает, что .

Теорема 5 (признак делимости разности): Если каждое из чисел а и b делится на с и а≥b , то разность а-b делится на с , т. е. если .

Доказательство: Пусть
. Тогда существуют q 1 ,q 2
N такие, что а=cq 1 , b=cq 2 . Поскольку а≥b, то q 1 >q 2 . Таким образом, имеем а-b =cq 1 -cq 2 =c(q 1 -q 2)=cq, где q 1 -q 2 =q
N. Следовательно, .

Теорема 6 (признак делимости произведения): Если хотя бы один из множителей произведения делится на натуральное число b, то и все произведение делится на это число, то есть
.

Доказательство: Пусть а k b, тогда существует q
N такое, что а k =bq. Отсюда, используя коммутативный и ассоциативный законы умножения, можем записать . Поскольку произведение целых неотрицательных чисел является целым неотрицательным числом, то последнее равенство означает, что
.

Теорема 7: Если в произведении ab множитель а делится на натуральное число m , а множитель b делится на натуральное число n , то произведение ab делится на произведение nm , то есть .

Доказательство: Пусть a m и b n, тогда существуют q 1 ,q 2
N такие что, a=mq 1 , b=nq 2 . Отсюда на основании комм. и ассоц. законов умножения имеем ab=(mq 1)(nq 2)=(mn)(q 1 q 2)=(mn)q, где q 1 q 2 =q
N . следовательно, ab mn.

Теорема 8: Если в сумме одно слагаемое не делится на натуральное число b , а все остальные слагаемые делятся на это число, то и вся сумма на число b не делится.

Доказательство: Пусть S=a 1 +a 2 +…+a n +c, где а 1 b, a 2 b, …, a n b, но
. Докажем, что
. Предположим противное, то есть S b. Тогда с=S-(a 1 +a 2 +…+a n), где S b, и (a 1 +a 2 +…+a n) b. По теореме о делимости разности это означает, что с b. Полученное противоречие и доказывает теорему.

Признаки делимости

Теорема 9 (признак делимости на 2) Для того чтобы число х делилось на 2, необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр 0,2,4,6,8.

Доказательство. Пусть число х

х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 , где а n , а n-1,…, a 1 принимают значения 0, 1, 2, ...9, а n ≠0 и а 0 принимает значения 0,2,4,6,8. Докажем, что тогда х: .2.

Так как 10: .2, то 10 2: .2, 10 3: .2,…,10 n: .2 и, значит, (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10) : .2. По условию а 0 тоже делится на 2, поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 2. Следовательно, согласно признаку делимости суммы, число хделится на 2.

Докажем обратное: если число х делится на 2, то его десятичная запись оканчивается одной из цифр 0,2,4,6,8.

Запишем равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 в таком виде: а 0 = х - (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10). Но тогда, по теореме о делимости разности, а 0: . 2, поскольку х: . 2 и (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10) : . 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0,2,4,6,8.

Теорема 10 (признак делимости на 5). Для того чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Доказать самостоятельно!

Доказательство этого признака аналогично доказательству признака делимости на 2.

Теорема 11 (признак делимости на 4). Для того чтобы число х делилось на 4, необходимо и достаточно, чтобы на 4 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х .

Доказательство . Пусть число х записано в десятичной системе счисления, т.е.

х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 и последние цифры в этой записи образуют число, которое делится на 4. Докажем, что тогда х: . 4.

Так как 100: . 4, то (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) : . 4. По условию, а 1 ·10 + а 0 (это и есть запись двузначного числа) также делится на 4. Поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 4. Следовательно, согласно признаку делимости суммы, и само число х делится на 4.

Докажем обратное, т.е. если число х делится на 4, тo двузначное число, образованное последними цифрами его десятичной записи, тоже делится на 4.

Запишем равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 в таком виде:

а 1 · 10 + а 0 = х- (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) .

Так как х: . 4 и (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) : . 4, то по теореме о делимости разности (а 1 · 10 + а 0) : . 4. Но выражение а 1 · 10 + а 0 есть запись двузначного числа, образованного последними цифрами записи числа х.

Теорема12 (признак делимости на 9) Для того чтобы число х делилось на 9, необходимо и достаточно, чтобы сум­ма цифр его десятичной записи делилось на 9.

Доказательство . Докажем сначала, что числа вида 10 n - 1 делятся на 9. Действительно, 10 n - 1 = (9·10 n-1 + 10 n-1) - 1 = (9·10 n-1 +9·10 n-2 + 10 n-2)-1 = (9·10 n-1 +9·10 n-2 + …+10)-1=9·10 n-1 +9·10 n-2 + …+9. Каждое слагаемое полученной сум­мы делится на 9, значит, и число 10 n - 1 делится на 9.

Пусть число х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 и (a n +a n-1 +…+a 1 +a 0) : . 9. Докажем, что тогда х: . 9.

Преобразуем сумму а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 , при­бавив и вычтя из нее выражение a n +a n-1 +…+a 1 +a 0 и записав результат в таком виде:

х = (а n ·10 - a n)+( а n-1 ·10 n-1 - a n-1)+…+( а 1 · 10 - a 1)+ (а 0 – а 0)+ (a n +a n-1 +…+a 1 +a 0)= n ·(10 n -1)+ a n-1 ·(10 n-1 -1)+…+ a 1 ·(10 -1)+ (a n +a n-1 +…+a 1 +a 0).

В последней сумме каждое слагаемое делится на 9:

а n ·(10 n -1) : . 9, так как (10 n -1) : . 9,

a n-1 ·(10 n-1 -1) : . 9,так как(10 n-1 -1) : . 9 и т.д.

a 1 ·(10 -1) : . 9, так как (10- 1) : . 9,

(a n +a n-1 +…+a 1 +a 0) : . 9 по условию.

Следовательно, х: . 9.

Докажем обратное, т.е. если х: . 9, то сумма цифр его деся­тичной записи делится на 9.

Равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 запи­шем в таком виде:

a n +a n-1 +…+a 1 +a 0 = х - (а n (10 n - 1) + а n-1 ·(10 n-1 -1) +…+ a 1 ·(10 -1).

Так как в правой части этого равенства и уменьшаемое, и вычитаемое кратны 9, то по теореме о делимости разности (a n +a n-1 +…+a 1 +a 0) : . 9, т.е. сумма цифр десятичной записи числа x делится на 9, что и требовалось доказать.

Теорема15 (признак делимости на 3): Для того чтобы число х делилось на 3, необходимо и достаточно, чтобы сум­ма цифр его десятичной записи делилась на 3.

Доказательство этого утверждения аналогично доказа­тельству признака делимости на 9.

В продолжение темы:
Организация ЕГЭ

(значительно увеличивает продолжительность загрузки)Всего страниц: 141 Размер файла: 975 Кб Страницы: «« 132 Ветвью Традици [Дюн-Хор]. Когда я, опираясь лишь на общий совет...

Новые статьи
/
Популярные