Что характеризует сила упругости в физике. Сила упругости
Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?
Для начала определим основные термины , которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация - это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д.), то деформация пластическая.
Примерами пластических деформаций являются:
- лепка из глины;
- погнутая алюминиевая ложка.
В свою очередь, упругими деформациями будут считаться:
- резинка (можно растянуть ее, после чего она вернется в исходное состояние);
- пружина (после сжатия снова распрямляется).
В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:
где F - сила упругости, x - расстояние, на которое изменилась длина тела в результате растяжения, k - необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).
Определение коэффициента жесткости
Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ - на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:
Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.
Единица измерения жесткости в СИ - Н/м.
Расчет жесткости системы
Встречаются более сложные задачи, в которых необходим расчет общей жесткости . В таких заданиях пружины соединены последовательно или параллельно.
Последовательное соединение системы пружин
При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:
1/k = 1/k1 + 1/k2 + … + 1/ki,
где k - общая жесткость системы, k1, k2, …, ki - отдельные жесткости каждого элемента, i - общее количество всех пружин, задействованных в системе.
Параллельное соединение системы пружин
В случае когда пружины соединены параллельно , величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:
k = k1 + k2 + … + ki.
Измерение жесткости пружины опытным путем - в этом видео.
Вычисление коэффициента жесткости опытным методом
С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука . Для проведения эксперимента понадобятся:
- линейка;
- пружина;
- груз с известной массой.
Последовательность действий для опыта такова:
- Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
- При помощи линейки измеряется ее длина и записывается как величина x1.
- На свободный конец нужно подвесить груз с известной массой m.
- Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
- Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
- Сила, которая вызвала деформацию, - это сила тяжести тела. Формула для ее расчета - F = mg, где m - это масса используемого в эксперименте груза (переводится в кг), а g - величина свободного ускорения, равная приблизительно 9,8.
- После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.
Примеры задач на нахождение жесткости
Задача 1
На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.
- Рассчитываем длину абсолютного удлинения: x = 14-10 = 4 см = 0,04 м.
- По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.
Ответ: жесткость пружины составит 2500 Н/м.
Задача 2
Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.
- Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
- Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
- Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
- По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
- Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.
Ответ: во втором случае пружина растянется на 10 см.
Видео
Из этого видео вы узнаете, как определить жесткость пружины.
В природе все взаимосвязано и непрерывно взаимодействует друг с другом. Каждая ее часть, каждый ее компонент и элемент постоянно подвергается воздействию целого комплекса сил.
Несмотря на то, что количество достаточно велико, все их можно разделить на четыре типа:
1. Силы гравитационного характера.
2. Силы электромагнитного характера.
3. Силы сильного типа.
В физике есть такое понятие, как упругая деформация. Упругая деформация - это такое явление деформации, при котором она исчезает после того, как прекращают действовать внешние силы. После такой деформации тело принимает свою изначальную форму. Таким образом, сила упругости, определение которой говорит, что она возникает в теле после упругой деформации, является потенциальной силой. Потенциальная сила, или консервативная сила - это такая сила, у которой ее работа не может быть зависимой от ее траектории, а зависит только от начальной и конечной точки приложения сил. Работа консервативной или потенциальной силы по замкнутой траектории будет равна нулю.
Можно сказать, что сила упругости имеет электромагнитную природу. Эту силу можно оценить как макроскопическое проявление взаимодействия между молекулами вещества или тела. В любом случае, при котором происходит либо сжатие, либо растяжение тела, проявляется сила упругости. Она направлена против силы, производящей деформацию, в направлении, противоположном смещению частиц данного тела, и перпендикулярна поверхности тела, подвергающегося деформации. Также и вектор этой силы направлен в сторону, противоположную деформации тела (смещению его молекул).
Вычисление значения силы упругости, возникающей в теле при деформации, происходит по Согласно ему, сила упругости равна произведению жесткости тела на изменение коэффициента деформации этого тела. По закону Гука, возникающая при определенной деформации тела или вещества сила упругости прямо пропорциональна удлинению этого тела, а направлена она в сторону, противоположную направлению, по которому перемещаются частицы данного тела относительно остальных частиц в момент деформации.
Показатель жесткости определенного тела или пропорциональный коэффициент зависит от материала, который используется для изготовления тела. Также жесткость зависит от геометрических пропорций и формы данного тела. В отношении силы упругости существует еще такое понятие, как Таким напряжением называют отношение модуля силы упругости к единице площади в данной точке рассматриваемого сечения. Если связать закон Гука с напряжением этого типа, то его формулировка прозвучит несколько иначе. Напряжение механического типа, которое возникает в теле при его деформации, всегда пропорционально относительному удлинению этого тела. Необходимо иметь в виду, что действие закона Гука ограничено только небольшими деформациями. Существуют пределы деформации, при которых действует данный закон. Если же они будет превышены, то сила упругости будет вычисляться по сложным формулам вне зависимости от закона Гука.
Определение
Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости .
Чаще всего ее обозначают ${\overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.
Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.
Рассмотрим пружину, на которую действует растягивающая сила ($\overline{F}$), которая направлена вертикально вниз (рис.1).
Силу $\overline{F\ }$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${\overline{F}}_u$), уравновешивающая силу $\overline{F\ }$. Если деформация является небольшой и упругой, то удлинение пружины ($\Delta l$) прямо пропорционально деформирующей силе:
\[\overline{F}=k\Delta l\left(1\right),\]
где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.
Жесткость (как свойство) - это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости - это основная характеристика жесткости (как свойства тела).
Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:
где $G$ - модуль сдвига (величина, зависящая от материала); $d$ - диаметр проволоки; $d_p$ - диаметр витка пружины; $n$ - количество витков пружины.
Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:
\[\left=\left[\frac{F_{upr\ }}{x}\right]=\frac{\left}{\left}=\frac{Н}{м}.\]
Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.
Формула жесткости соединений пружин
Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:
\[\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}+\dots =\sum\limits^N_{\ i=1}{\frac{1}{k_i}\left(3\right),}\]
где $k_i$ - жесткость $i-ой$ пружины.
При последовательном соединении пружин жесткость системы определяют как:
Примеры задач с решением
Пример 1
Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $\frac{Н}{м}.\ $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.
Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:
При упругих деформациях выполняется закон Гука:
Из (1.2) найдем удлинение пружины:
\[\Delta l=\frac{F}{k}\left(1.3\right).\]
Длина растянутой пружины равна:
Вычислим новую длину пружины:
Ответ. 1) $k"=10\ \frac{Н}{м}$; 2) $l"=0,21$ м
Пример 2
Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $\Delta l_2$?
Решение. Если пружины соединены последовательно, то деформирующая сила ($\overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:
Для второй пружины запишем:
Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:
Из равенства (2.3) получим удлинение первой пружины:
\[\Delta l_1=\frac{k_2\Delta l_2}{k_1}.\]
Ответ. $\Delta l_1=\frac{k_2\Delta l_2}{k_1}$
На все тела, находящиеся вблизи Земли, действует ее притяжение. Под действием силы тяжести падают на Землю капли дождя, снежинки, оторвавшиеся от веток листья.
Но когда тот же снег лежит на крыше, его по-прежнему притягивает Земля, однако он не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на снег с силои, равной силе тяжести, но направленной в противоположную сторону. Что это за сила?
На рисунке 34, а изображена доска, лежащая на двух подставках. Если на ее середину поместить гирю, то под действием силы тяжести гиря начнет двигаться, но через некоторое время, прогнув доску, остановится (рис. 34, б ). При этом сила тяжести окажется уравновешенной силой, действующей на гирю со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости . Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб. Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести и их равнодействующая стала равной нулю.
Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры .
Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.
Сила упругости возникает и при сжатии . Именно она заставляет распрямляться сжатую пружину и толкать прикрепленное к ней тело (см. рис. 27, б ).
Большой вклад в изучение силы упругости внес английский ученый Р. Гук. В 1660 г., когда ему было 25 лет, он установил закон, названный впоследствии его именем. Закон Гука гласит:
Сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению.
Если удлинение тела, т. е. изменение его длины, обозначить через х , а силу упругости - через F упр , то закону Гука можно придать следующую математическую форму:
F упр = kx ,
где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.
Единицей жесткости в СИ является ньютон на метр (1 Н/м).
Проделав ряд экспериментов, подтвердивших данный закон, Гук отказался от его публикации. Поэтому в течение долгого времени никто не знал о его открытии. Даже спустя 16 лет, все еще не доверяя своим коллегам, Гук в одной из своих книг привел лишь зашифрованную формулировку (анаграмму) своего закона. Она имела вид
Выждав два года, чтобы конкуренты могли сделать заявки о своих открытиях, он наконец расшифровал свой закон. Анаграмма расшифровывалась так:
ut tensio, sic vis
(что в переводе с латинского означает: каково растяжение, такова и сила). «Сила любой пружины,- писал Гук,- пропорциональна ее растяжению».
Гук изучал упругие деформации. Так называют деформации, которые исчезают после прекращения внешнего воздействия. Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть на столько, что, после того как ее отпустят, она так и останется растянутой. Деформации, которые не исчезают после прекращения внешнего воздействия, называют пластическими .
Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов - ковке, штамповке и т. д.
Для пластических деформаций закон Гука не выполняется.
В древние времена упругие свойства некоторых материалов (в частности, такого дерева, как тис) позволили нашим предкам изобрести лук - ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.
Появившись примерно 12 тысяч лет назад, лук просуществовал на протяжении многих веков как основное оружие почти всех племен и народов мира. До изобретения огнестрельного оружия лук являлся самым эффективным боевым средством. Английские лучники могли пускать до 14 стрел в минуту, что при массовом использовании луков в бою создавало целую тучу стрел. Например, число стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составило примерно 6 миллионов!
Широкое распространение этого грозного оружия в средние века вызвало обоснованный протест со стороны определенных кругов общества. В 1139 г. собравшийся в Риме Латеранский (церковный) собор запретил применение этого оружия против христиан. Однако борьба за «лучное разоружение» не имела успеха, и лук как боевое оружие продолжал использоваться людьми еще на протяжении пятисот лет.
Совершенствование конструкции лука и создание самострелов (арбалетов) привело к тому, что выпущенные из них стрелы стали пробивать любые доспехи. Но военная наука не стояла на месте. И в XVII в. лук был вытеснен огнестрельным оружием.
В наше время стрельба из лука является лишь одним из видов спорта.
1. В каких случаях возникает сила упругости? 2. Что называют деформацией? Приведите примеры деформаций. 3. Сформулируйте закон Гука. 4. Что такое жесткость? 5. Чем отличаются упругие деформации от пластических?
Природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. В простейшем случае растяжения/сжатия тела сила упругости направлена противоположно смещению частиц тела, перпендикулярно поверхности.
Вектор силы противоположен направлению деформации тела (смещению его молекул).
Закон Гука
В простейшем случае одномерных малых упругих деформаций формула для силы упругости имеет вид:
,где - жёсткость тела, - величина деформации.
В словесной формулировке закон Гука звучит следующим образом:
Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации.
Нелинейные деформации
При увеличении величины деформации закон Гука перестаёт действовать, сила упругости начинает сложным образом зависеть от величины растяжения или сжатия.
Wikimedia Foundation . 2010 .
Смотреть что такое "Сила упругости" в других словарях:
сила упругости - энергия упругости — Тематики нефтегазовая промышленность Синонимы энергия упругости EN elastic energy … Справочник технического переводчика
сила упругости - tamprumo jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Vidinės kūno jėgos, veikiančios prieš jį deformuojančias išorines jėgas ir iš dalies ar visiškai atkuriančios deformuotojo kūno (skysčių, dujų) tūrį ir (kietojo kūno) formą … Penkiakalbis aiškinamasis metrologijos terminų žodynas
сила упругости - tamprumo jėga statusas T sritis fizika atitikmenys: angl. elastic force vok. elastische Kraft, f rus. сила упругости, f; упругая сила, f pranc. force élastique, f … Fizikos terminų žodynas
СИЛА - векторная величина мера механического воздействия на тело со стороны др. тел, а также интенсивности др. физ. процессов и полей. Силы бывают различными: (1) С. Ампёра сила, с которой (см.) действует на проводник с током; направление вектора силы… … Большая политехническая энциклопедия
Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ … Википедия
Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ ньютон … Википедия
Сущ., ж., употр. наиб. часто Морфология: (нет) чего? силы, чему? силе, (вижу) что? силу, чем? силой, о чём? о силе; мн. что? силы, (нет) чего? сил, чему? силам, (вижу) что? силы, чем? силами, о чём? о силах 1. Силой называют способность живых… … Толковый словарь Дмитриева
Раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. основа расчётов на прочность, деформируемость и устойчивость в строит, деле, авиа и… … Физическая энциклопедия
Раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретич. основа расчётов на прочность, деформируемость и устойчивость в строит. деле,… … Физическая энциклопедия
Раздел механики (См. Механика), в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретическая основа расчётов на прочность, деформируемость и… … Большая советская энциклопедия
Книги
- Сила и деформация. Прикладная теория упругости Том 2 , А. Феппль. ПРЕДИСЛОВИЕ РЕДАКТОРА РУССКОГО ПЕРЕВОДА КО ВТОРОМУ ТОМУ. Выход из печати второго тома книги А. Феппля и Л. Феппля задержался настолько, что первоначальные предположения о помещении ряда…