Число в бесконечной степени. Основные неопределенности пределов и их раскрытие
КОНСПЕКТ 20
20.1 РАСКРЫТИЕ НЕОПРЕДЕЛЕННОСТИ ВИДА
Пример 1
Решить предел Сначала попробуем подставить -1 в дробь:В данном случае получена так называемая неопределенность.
Общее правило: если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида, то для ее раскрытиянужно разложить числитель и знаменатель на множители .
Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения.
Разложим числитель на множители.
Пример 2
Вычислить предел
Разложим числитель и знаменатель на множители.
Числитель: Знаменатель:,
Метод умножения числителя и знаменателя на сопряженное выражение
Продолжаем рассматривать неопределенность вида
Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.
Пример 3
Найти предел
Умножим числитель и знаменатель на сопряженное выражение.
20.2 РАСКРЫТИЕ НЕОПРЕДЕЛЕННОСТИ ВИДА
Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены
Пример 4
Вычислить предел
Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что, и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.
Как решать пределы данного типа?
Сначала мы смотрим на числитель и находим в старшей степени:Старшая степень в числителе равна двум.
Теперь смотрим на знаменатель и тоже находим в старшей степени:Старшая степень знаменателя равна двум.
Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.
Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени.
Разделим
числитель и знаменатель на
Вот оно как, ответ , а вовсе не бесконечность.
Что принципиально важно в оформлении решения?
Во-первых, указываем неопределенность, если она есть.
Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.
В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так: Для пометок лучше использовать простой карандаш.
Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?
Пример 5
Найти предел Снова в числителе и знаменателе находимв старшей степени:Максимальная степень в числителе: 3 Максимальная степень в знаменателе: 4 Выбираемнаибольшее значение, в данном случае четверку. Согласно нашему алгоритму, для раскрытия неопределенностиделим числитель и знаменатель на. Полное оформление задания может выглядеть так:
Пример 6
Найти предел Максимальная степень «икса» в числителе: 2 Максимальная степень «икса» в знаменателе: 1 (можно записать как) Для раскрытия неопределенностинеобходимо разделить числитель и знаменатель на. Чистовой вариант решения может выглядеть так:
Разделим числитель и знаменатель на
Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.
Таким образом, при раскрытии неопределенности вида у нас может получитьсяконечное число , ноль или бесконечность.
ПРАКТИКУМ 20
ЗАДАНИЕ N 1
Решение: Если вместо переменнойпоставить значение 7, к которому она стремится, то получим неопределенность видатогда
ЗАДАНИЕ N 2 Тема: Раскрытие неопределенности вида "ноль на ноль"
Решение: Если вместо переменнойпоставить значение 0, к которому она стремится, то получим неопределенность видатогда
ЗАДАНИЕ N 3 Тема: Раскрытие неопределенности вида "ноль на ноль"
Решение: Если вместо переменнойпоставить значение 6, к которому она стремится, то получим неопределенность видатогда
ЗАДАНИЕ N 4
Решение:
Так каки
ЗАДАНИЕ N 5 Тема: Раскрытие неопределенности вида "бесконечность на бесконечность"
Решение:
Так какито
имеет место неопределенность видаДля
ее раскрытия нужно разделить каждое
слагаемое числителя и знаменателя на.
Тогда, зная, чтополучим:
САМОСТОЯТЕЛЬНАЯ РАБОТА 20
ЗАДАНИЕ N 1 Тема: Раскрытие неопределенности вида "ноль на ноль"
ЗАДАНИЕ N 2 Тема: Раскрытие неопределенности вида "ноль на ноль"
ЗАДАНИЕ N 3 Тема: Раскрытие неопределенности вида "ноль на ноль"
ЗАДАНИЕ N 4 Тема: Раскрытие неопределенности вида "бесконечность на бесконечность"
ЗАДАНИЕ N 5 Тема: Раскрытие неопределенности вида "бесконечность на бесконечность" Предел функцииравен …
ЗАДАНИЕ N 6 Тема: Раскрытие неопределенности вида "бесконечность на бесконечность"
Производная от функции недалеко падает, а в случае правил Лопиталя она падает точно туда же, куда падает исходная функция. Это обстоятельство помогает в раскрытии неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций. Вычисление значительно упрощается с помощью этого правила (на самом деле двух правил и замечаний к ним):
Как показывает формула выше, при вычислении предела отношений двух бесконечно малых или бесконечно больших функций предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.
Перейдём к более точным формулировкам правил Лопиталя.
Правило Лопиталя для случая предела двух бесконечно малых величин . Пусть функции f (x ) и g (x a . А в самой точке a a производная функции g (x ) не равна нулю (g "(x a равны между собой и равны нулю:
.
Правило Лопиталя для случая предела двух бесконечно больших величин . Пусть функции f (x ) и g (x ) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a . А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g (x ) не равна нулю (g "(x )≠0 ) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности:
.
Тогда предел отношения этих функций равен пределу отношения их производных:
Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный, то есть равный определённому числу, или бесконечный, то есть равный бесконечности).
Замечания .
1. Правила Лопиталя применимы и тогда, когда функции f (x ) и g (x ) не определены при x = a .
2. Если при вычисления предела отношения производных функций f (x ) и g (x ) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).
3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a , а к бесконечности (x → ∞).
К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.
Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"
Пример 1.
x =2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем
В числителе вычисляли производную многочлена, а в знаменателе - производную сложной логарифмической функции . Перед последним знаком равенства вычисляли обычный предел , подставляя вместо икса двойку.
Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:
Решение. Подстановка в заданную функцию значения x
Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:
Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:
Пример 4. Вычислить
Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:
Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.
Раскрытие неопределённостей вида "ноль умножить на бесконечность"
Пример 12. Вычислить
.
Решение. Получаем
В этом примере использовано тригонометрическое тождество .
Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"
Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида
Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .
Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:
Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.
Пример 13.
Решение. Получаем
.
.
Пример 14. Вычислить, пользуясь правилом Лопиталя
Решение. Получаем
Вычисляем предел выражения в показателе степени
.
.
Пример 15. Вычислить, пользуясь правилом Лопиталя
В предыдущей статье мы рассказывали, как правильно вычислять пределы элементарных функций. Если же мы возьмем более сложные функции, то у нас в расчетах появятся выражения с неопределенным значением. Они и называются неопределенностями.
Выделяют следующие основные виды неопределенностей:
- Деление 0 на 0 0 0 ;
- Деление одной бесконечности на другую ∞ ∞ ;
- бесконечность, возведенная в нулевую степень ∞ 0 .
0 , возведенный в нулевую степень 0 0 ;
Мы перечислили все основные неопределенности. Другие выражения в различных условиях могут принимать конечные или бесконечные значения, следовательно, они не могут считаться неопределенностями.
Раскрытие неопределенностей
Раскрыть неопределенность можно:
- С помощью упрощения вида функции (использование формул сокращенного умножения, тригонометрических формул, дополнительное умножение на сопряженные выражения и последующее сокращение и др.);
С помощью замечательных пределов;
С помощью правила Лопиталя;
Заменив одно бесконечно малое выражение на эквивалентное ему выражение (как правило, это действие выполняется с помощью таблицы бесконечно малых выражений).
Всю информацию, представленную выше, можно наглядно представить в виде таблицы. С левой стороны в ней приводится вид неопределенности, с правой – подходящий метод ее раскрытия (нахождения предела). Этой таблицей очень удобно пользоваться при расчетах, связанных с нахождением пределов.
Неопределенность | Метод раскрытия неопределенности |
1. Деление 0 на 0 | Преобразование и последующее упрощение выражения. Если выражение имеет вид sin (k x) k x или k x sin (k x) то нужно использовать первый замечательный предел. Если такое решение не подходит, пользуемся правилом Лопиталя или таблицей эквивалентных бесконечно малых выражений |
2. Деление бесконечности на бесконечность | Преобразование и упрощение выражения либо использование правила Лопиталя |
3. Умножение нуля на бесконечность или нахождение разности между двумя бесконечностями | Преобразование в 0 0 или ∞ ∞ с последующим применением правила Лопиталя |
4. Единица в степени бесконечности | Использование второго замечательного предела |
5. Возведение нуля или бесконечности в нулевую степень | Логарифмирование выражения с применением равенства lim x → x 0 ln (f (x)) = ln lim x → x 0 f (x) |
Разберем пару задач. Эти примеры довольно простые: в них ответ получается сразу после подстановки значений и неопределенности при этом не возникает.
Пример 1
Вычислите предел lim x → 1 x 3 + 3 x - 1 x 5 + 3 .
Решение
Выполняем подстановку значений и получаем ответ.
lim x → 1 x 3 + 3 x - 1 x 5 + 3 = 1 3 + 3 · 1 - 1 1 5 + 3 = 3 4 = 3 2
Ответ: lim x → 1 x 3 + 3 x - 1 x 5 + 3 = 3 2 .
Пример 2
Вычислите предел lim x → 0 (x 2 + 2 , 5) 1 x 2 .
Решение
У нас есть показательно степенная функция, в основание которой нужно подставить x = 0 .
(x 2 + 2 , 5) x = 0 = 0 2 + 2 , 5 = 2 , 5
Значит, мы можем преобразовать предел в следующее выражение:
lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2
Теперь разберемся с показателем – степенной функцией 1 x 2 = x - 2 . Заглянем в таблицу пределов для степенных функций с показателем меньше нуля и получим следующее: lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x - 2 = + ∞ и lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x - 2 = + ∞
Таким образом, можно записать, что lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ .
Теперь берем таблицу пределов показательных функций с основаниями, большими 0 , и получаем:
lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ = + ∞
Ответ: lim x → 0 (x 2 + 2 , 5) 1 x 2 = + ∞ .
Пример 3
Вычислите предел lim x → 1 x 2 - 1 x - 1 .
Решение
Выполняем подстановку значений.
lim x → 1 x 2 - 1 x - 1 = 1 2 - 1 1 - 1 = 0 0
В итоге у нас получилась неопределенность. Используем таблицу выше, чтобы выбрать метод решения. Там указано, что нужно выполнить упрощение выражения.
lim x → 1 x 2 - 1 x - 1 = 0 0 = lim x → 1 (x - 1) · (x + 1) x - 1 = = lim x → 1 (x - 1) · (x + 1) · (x + 1) x - 1 = lim x → 1 (x + 1) · x - 1 = = 1 + 1 · 1 - 1 = 2 · 0 = 0
Как мы видим, упрощение привело к раскрытию неопределенности.
Ответ: lim x → 1 x 2 - 1 x - 1 = 0
Пример 4
Вычислите предел lim x → 3 x - 3 12 - x - 6 + x .
Решение
Подставляем значение и получаем запись следующего вида.
lim x → 3 x - 3 12 - x - 6 + x = 3 - 3 12 - 3 - 6 + 3 = 0 9 - 9 = 0 0
Мы пришли к необходимости делить нуль на нуль, что является неопределенностью. Посмотрим нужный метод решения в таблице – это упрощение и преобразование выражения. Выполним дополнительное умножение числителя и знаменателя на сопряженное знаменателю выражение 12 - x + 6 + x:
lim x → 3 x - 3 12 - x - 6 + x = 0 0 = lim x → 3 x - 3 12 - x + 6 + x 12 - x - 6 + x 12 - x + 6 + x
Домножение знаменателя выполняется для того, чтобы потом можно было воспользоваться формулой сокращенного умножения (разность квадратов) и выполнить сокращение.
lim x → 3 x - 3 12 - x + 6 + x 12 - x - 6 + x 12 - x + 6 + x = lim x → 3 x - 3 12 - x + 6 + x 12 - x 2 - 6 + x 2 = lim x → 3 (x - 3) 12 - x + 6 + x 12 - x - (6 + x) = = lim x → 3 (x - 3) 12 - x + 6 + x 6 - 2 x = lim x → 3 (x - 3) 12 - x + 6 + x - 2 (x - 3) = = lim x → 3 12 - x + 6 + x - 2 = 12 - 3 + 6 + 3 - 2 = 9 + 9 - 2 = - 9 = - 3
Как мы видим, в результате этих действий нам удалось избавиться от неопределенности.
Ответ: lim x → 3 x - 3 12 - x - 6 + x = - 3 .
Важно отметить, что при решении подобных задач подход с использованием домножения используется очень часто, так что советуем запомнить, как именно это делается.
Пример 5
Вычислите предел lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 .
Решение
Выполняем подстановку.
lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 1 2 + 2 · 1 - 3 3 · 1 2 - 5 · 1 + 2 = 0 0
В итоге у нас вышла неопределенность. Рекомендуемый способ решения задачи в таком случае – упрощение выражения. Поскольку при значении x , равном единице, числитель и знаменатель обращаются в 0 , то мы можем разложить их на множители и потом сократить на х - 1 ,и тогда неопределенность исчезнет.
Выполняем разложение числителя на множители:
x 2 + 2 x - 3 = 0 D = 2 2 - 4 · 1 · (- 3) = 16 ⇒ x 1 = - 2 - 16 2 = - 3 x 2 = - 2 + 16 2 = 1 ⇒ x 2 + 2 x - 3 = x + 3 x - 1
Теперь делаем то же самое со знаменателем:
3 x 2 - 5 x + 2 = 0 D = - 5 2 - 4 · 3 · 2 = 1 ⇒ x 1 = 5 - 1 2 · 3 = 2 3 x 2 = 5 + 1 2 · 3 = 1 ⇒ 3 x 2 - 5 x + 3 = 3 x - 2 3 x - 1
Мы получили предел следующего вида:
lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 0 0 = lim x → 1 x + 3 · x - 1 3 · x - 2 3 · x - 1 = = lim x → 1 x + 3 3 · x - 2 3 = 1 + 3 3 · 1 - 2 3 = 4
Как мы видим, в ходе преобразования нам удалось избавиться от неопределенности.
Ответ: lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 4 .
Далее нам нужно рассмотреть случаи пределов на бесконечности от степенных выражений. Если показатели этих выражений будут больше 0 , то предел на бесконечности также окажется бесконечным. При этом основное значение имеет самая большая степень, а остальные можно не учитывать.
Например, lim x → ∞ (x 4 + 2 x 3 - 6) = lim x → ∞ x 4 = ∞ или lim x → ∞ x 4 + 4 x 3 + 21 x 2 - 11 5 = lim x → ∞ x 4 5 = ∞ .
Если под знаком предела у нас стоит дробь со степенными выражениями в числителе и знаменателе, то при x → ∞ у нас возникает неопределенность вида ∞ ∞ . Чтобы избавиться от этой неопределенности, нам нужно разделить числитель и знаменатель дроби на x m a x (m , n) . Приведем пример решения подобной задачи.
Пример 6
Вычислите предел lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 .
Решение
lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = ∞ ∞
Степени числителя и знаменателя равны 7 . Делим их на x 7 и получаем:
lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = lim x → ∞ x 7 + 2 x 5 - 4 x 7 3 x 7 + 12 x 7 = = lim x → ∞ 1 + 2 x 2 - 4 x 7 3 + 12 x 7 = 1 + 2 ∞ 2 - 4 ∞ 7 3 + 12 ∞ 7 = 1 + 0 - 0 3 + 0 = 1 3
Ответ: lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = 1 3 .
Пример 7
Вычислите предел lim x → ∞ x 8 + 11 3 x 2 + x + 1 .
Решение
lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ ∞
Числитель имеет степень 8 3 , а знаменатель 2 . Выполним деление числителя и знаменателя на x 8 3:
lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ ∞ = lim x → ∞ x 8 + 11 3 x 8 3 x 2 + x + 1 x 8 3 = = lim x → ∞ 1 + 11 x 8 3 1 x 2 3 + 1 x 5 3 + 1 x 8 3 = 1 + 11 ∞ 3 1 ∞ + 1 ∞ + 1 ∞ = 1 + 0 3 0 + 0 + 0 = 1 0 = ∞
Ответ: lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ .
Пример 8
Вычислите предел lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 .
Решение
lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = ∞ ∞
У нас есть числитель в степени 3 и знаменатель в степени 10 3 . Значит, нам нужно разделить числитель и знаменатель на x 10 3:
lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = ∞ ∞ = lim x → ∞ x 3 + 2 x 2 - 1 x 10 3 x 10 + 56 x 7 + 12 3 x 10 3 = = lim x → ∞ 1 x 1 3 + 2 x 4 3 - 1 x 10 3 1 + 56 x 3 + 12 x 10 3 = 1 ∞ + 2 ∞ - 1 ∞ 1 + 56 ∞ + 12 ∞ 3 = 0 + 0 - 0 1 + 0 + 0 3 = 0
Ответ: lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = 0 .
Выводы
В случае с пределом отношений возможны три основных варианта:
Если степень числителя равна степени знаменателя, то предел будет равен отношению коэффициентов при старших степенях.
Если степень числителя будет больше степени знаменателя, то предел будет равен бесконечности.
Если степень числителя меньше степени знаменателя, то предел будет равен нулю.
Другие методы раскрытия неопределенностей мы разберем в отдельных статьях.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Основных элементарных функций разобрались.
При переходе к функциям более сложного вида мы обязательно столкнемся с появлением выражений, значение которых не определено. Такие выражения называют неопределенностями .
Перечислим все основные виды неопределенностей : ноль делить на ноль (0 на 0 ), бесконечность делить на бесконечность , ноль умножить на бесконечность , бесконечность минус бесконечность , единица в степени бесконечность , ноль в степени ноль , бесконечность в степени ноль .
ВСЕ ДРУГИЕ ВЫРАЖЕНИЯ НЕОПРЕДЕЛЕННОСТЯМИ НЕ ЯВЛЯЮТСЯ И ПРИНИМАЮТ ВПОЛНЕ КОНКРЕТНОЕ КОНЕЧНОЕ ИЛИ БЕСКОНЕЧНОЕ ЗНАЧЕНИЕ.
Раскрывать неопределенности позволяет:
- упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.);
- использование замечательных пределов;
- применение правила Лопиталя ;
- использование замены бесконечно малого выражения ему эквивалентным (использование таблицы эквивалентных бесконечно малых).
Сгруппируем неопределенности в таблицу неопределенностей . Каждому виду неопределенности поставим в соответствие метод ее раскрытия (метод нахождения предела).
Эта таблица вместе с таблицей пределов основных элементарных функций будут Вашими главными инструментами при нахождении любых пределов.
Приведем парочку примеров, когда все сразу получается после подстановки значения и неопределенности не возникают.
Пример.
Вычислить предел
Решение.
Подставляем значение:
И сразу получили ответ.
Ответ:
Пример.
Вычислить предел
Решение.
Подставляем значение х=0
в основание нашей показательно степенной функции:
То есть, предел можно переписать в виде
Теперь займемся показателем. Это есть степенная функция . Обратимся к таблице пределов для степенных функций с отрицательным показателем. Оттуда имеем и , следовательно, можно записать .
Исходя из этого, наш предел запишется в виде:
Вновь обращаемся к таблице пределов, но уже для показательных функций с основанием большим единицы, откуда имеем:
Ответ:
Разберем на примерах с подробными решениями раскрытие неопределенностей преобразованием выражений .
Очень часто выражение под знаком предела нужно немного преобразовать, чтобы избавиться от неопределенностей.
Пример.
Вычислить предел
Решение.
Подставляем значение:
Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения. Пробуем упростить выражение.
Ответ:
Пример.
Вычислить предел
Решение.
Подставляем значение:
Пришли к неопределенности (0 на 0 ). Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Домножим и числитель и знаменатель на выражение, сопряженное знаменателю.
Для знаменателя сопряженным выражением будет
Знаменатель мы домножали для того, чтобы можно было применить формулу сокращенного умножения – разность квадратов и затем сократить полученное выражение.
После ряда преобразований неопределенность исчезла.
Ответ:
ЗАМЕЧАНИЕ: для пределов подобного вида способ домножения на сопряженные выражения является типичным, так что смело пользуйтесь.
Пример.
Вычислить предел
Решение.
Подставляем значение:
Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Так как и числитель и знаменатель обращаются в ноль при х=1 , то если эти выражения, можно будет сократить (х-1) и неопределенность исчезнет.
Разложим числитель на множители:
Разложим знаменатель на множители:
Наш предел примет вид:
После преобразования неопределенность раскрылась.
Ответ:
Рассмотрим пределы на бесконечности от степенных выражений. Если показатели степенного выражения положительны, то предел на бесконечности бесконечен. Причем основное значение имеет наибольшая степень, остальные можно отбрасывать.
Пример.
Пример.
Если выражение под знаком предела представляет собой дробь, причем и числитель и знаменатель есть степенные выражения (m – степень числителя, а n – степень знаменателя), то при возникает неопределенность вида бесконечность на бесконечность , в этом случае неопределенность раскрывается делением и числитель и знаменатель на
Пример.
Вычислить предел
Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены
Пример 4
Найти предел
Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).
Если «икс» стремится к «минус бесконечности»
Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.
Рассмотрим 4 фишки, которые потребуются для решения практических заданий:
1) Вычислим предел
Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю
отрицательное число в ЧЁТНОЙ степени
, в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна
, поэтому:
2) Вычислим предел
Здесь старшая степень опять чётная
, поэтому: . Но перед расположился «минус» (отрицательная
константа –1), следовательно:
3) Вычислим предел
Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю
отрицательное число в НЕЧЁТНОЙ степени
равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна
, значит:
4) Вычислим предел
Первый парень на деревне снова обладает нечётной
степенью, кроме того, за пазухой отрицательная
константа, а значит: Таким образом:
.
Пример 5
Найти предел
Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:
Решение тривиально:
Пример 6
Найти предел
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
А сейчас, пожалуй, самый тонкий из случаев:
Пример 7
Найти предел
Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:
Решаем:
Разделим числитель и знаменатель на
Пример 15
Найти предел
Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.
Ещё пара занятных примеров на тему замены переменной:
Пример 16
Найти предел
При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?
Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.
Проведем замену:
Если , то
Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .
Завершаем решение:
(1) Проводим подстановку
(2) Раскрываем скобки под косинусом.
(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .
Задание для самостоятельного решения:
Пример 17
Найти предел
Полное решение и ответ в конце урока.
Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)
В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:
Устранение неопределённости «единица в степени бесконечность»
Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.
Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?
На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):
Неопределённость можно устранить по формуле:
Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.
Выделим существенные моменты формулы:
1) Речь идёт только о неопределённости и никакой другой .
2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.
С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :
В данном случае , и по формуле :
Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.