Основные свойства аминокислот. Свойства и функции аминокислот

Ни для кого не секрет, что человеку для поддержания жизнедеятельности на высоком уровне необходим белок - своеобразный строительный материал для тканей организма; в состав белков входят 20 аминокислот, названия которых вряд ли что-то скажут обычному офисному работнику. Каждый человек, особенно если говорить о женщинах, хоть раз слышал о коллагене и кератине - это протеины, которые отвечают за внешний вид ногтей, кожи и волос.

Аминокислоты - что это такое?

Аминокислоты (или же аминокарбоновые кислоты; АМК; пептиды) - органические соединения, на 16 % состоящие из аминов - органических производных аммония, - что отличает их от углеводов и липидов. Они участвуют в биосинтезе белка организмом: в пищеварительной системе под влиянием ферментов все белки, поступающие с едой, разрушаются до АМК. Всего в природе существует около 200 пептидов, но в построении организма человека участвуют всего 20 основных аминокислот, которые подразделяются на заменимые и незаменимые; иногда встречается и третий вид - полузаменимые (условно заменяемые).

Заменимые аминокислоты

Заменимыми называют те аминокислоты, которые как потребляются с продуктами питания, так и воспроизводятся непосредственно в теле человека из других веществ.

  • Аланин - мономер биологических соединений и белков. Осуществляет один из главенствующих путей глюкогенеза, то есть в печени превращается в глюкозу, и наоборот. Высокоактивный участник метаболических процессов в организме.
  • Аргинин - АМК, способная синтезироваться в организме взрослого, но не способная к синтезу в теле ребёнка. Содействует выработке гормонов роста и других. Единственный переносчик азотистых соединений в организме. Содействует увеличению мышечной массы и уменьшению жировой.
  • Аспарагин - пептид, участвующий в азотном обмене. В ходе реакции с ферментом аспарагиназой отщепляет аммониак и превращается в аспарагиновую кислоту.
  • Аспарагиновая кислота - принимает участие в создании иммуноглобулина, деактивирует аммиак. Необходим при сбоях в работе нервной и сердечно-сосудистой систем.
  • Гистидин - используется для профилактики и лечения болезней ЖКТ; оказывает положительную динамику при борьбе со СПИДом. Уберегает организм от пагубного воздействия стресса.
  • Глицин - нейромедиаторная аминокислота. Применяется в качестве мягкое успокоительное и антидепрессивное средство. Усиливает действие некоторых ноотропных препаратов.
  • Глутамин - в большом объёме Активатор процессов восстановления тканей.
  • Глутаминовая кислота - обладает нейромедиаторным действием, а также стимулирует метаболические процессы в ЦНС.
  • Пролин - является одним из составляющих практически всех протеинов. Им особенно богаты эластин и коллаген, отвечающие за эластичность кожи.
  • Серин - АМК, что содержится в нейронах головного мозга, а также способствует выделению большого количества энергии. Является производной глицина.
  • Тирозин - составляющая тканей животных и растений. Может воспроизводиться из фенилаланина под действием фермента фенилаланингидроксилазы; обратного процесса не происходит.
  • Цистеин - один из компонентов кератина, отвечающего за упругость и эластичность волос, ногтей, кожи. Ещё он является антиоксидантом. Может производиться из серина.

Аминокислоты, не способные к синтезу в организме, - незаменимые

Незаменимыми аминокислотами называют те, которые не способные генерироваться в организме человека и способны поступать только с продуктами питания.

  • Валин - АМК, которая содержится практически во всех белках. Повышает координацию мышц и снижает чувствительность организма к температурным перепадам. Поддерживает гормон серотонин на высоком уровне.
  • Изолейцин - естественный анаболик, который в процессе окисления насыщает энергией мышечную и мозговую ткани.
  • Лейцин - аминокислота, улучшающая метаболизм. Является своеобразным «строителем» структуры белка.
  • Эти три АМК входят в так называемый комплекс BCAA, особо востребованный среди спортсменов. Вещества этой группы выступают в качестве источника для увеличения объема мышечной массы, уменьшения жировой массы и поддержания хорошего самочувствия при особо интенсивных физических нагрузках.
  • Лизин - пептид, ускоряющий регенерацию тканей, выработку гормонов, ферментов и антител. Отвечает за прочность сосудов, содержится в мышечном белке и коллагене.
  • Метионин - пронимает участие в синтезе холина, недостаток которого может привести к усиленному накоплению жира в печени.
  • Треонин - придает эластичность и силу сухожилиям. Очень положительно влияет на сердечную мышцу и зубную эмаль.
  • Триптофан - поддерживает эмоциональное состояние, так как в организме преобразуется в серотонин. Незаменим при депрессиях и других психологических расстройствах.
  • Фенилаланин - улучшает внешний вид кожи, нормализуя пигментацию. Поддерживает психологическое благополучие, улучшая настроение и привнося ясность в мышление.

Другие методы классификации пептидов

С научной стороны 20 незаменимых аминокислот подразделяют, основываясь на полярности их боковой цепи, то есть радикалов. Таким образом, выделяются четыре группы: (но не имеющие заряда), положительно заряженные и отрицательно заряженные.

Неполярными являются: валин, аланин, лейцин, изолейцин, метионин, глицин, триптофан, фенилаланин, пролин. В свою очередь, к полярным, имеющим отрицательный заряд относят аспарагиновую и глутаминовую кислоты. Полярными, имеющими положительный заряд, называют аргинин, гистидин, лизин. К аминокислотам, обладающим полярностью, но не имеющим заряда, относят непосредственно цистеин, глутамин, серин, тирозин, треонин, аспарагин.

20 аминокислот: формулы (таблица)

Аминокислота

Аббревиатура

Аспарагин

Аспарагиновая кислота

Гистидин

Глутамин

Глутаминовая кислота

Изолейцин

Метионин

Триптофан

Фенилаланин

Основываясь на этом, можно отметить, что все 20 в таблице выше) имеют в своем составе углерод, водород, азот и кислород.

Аминокислоты: участие в жизнедеятельности клетки

Аминокарбоновые кислоты участвуют в биологическом синтезе белка. Биосинтез белка - процесс моделирования полипептидной («поли» - много) цепи из остатков аминокислот. Протекает процесс на рибосоме - органелле внутри клетки, отвечающей непосредственно за биосинтез.

Информация считывается с участка цепи ДНК по принципу комплементарности (А-Т, Ц-Г), при создании м-РНК (матричная РНК, или и-РНК - информационная РНК - тождественно равные понятия) азотистое основание тимин заменяется на урацил. Далее всё по тому же принципу создается переносящая молекулы аминокислот к месту синтеза. Т-РНК закодирована триплетами (кодонами) (пример: УАУ), и если знать, какими азотистыми основаниями представлен триплет, можно узнать, какую именно аминокислоту он переносит.

Группы продуктов питания с наибольшим содержанием АМК

В молочных продуктах и яйцах содержатся такие важные вещества, как валин, лейцин, изолейцин, аргинин, триптофан, метионин и фенилаланин. Рыба, белое мясо обладают высоким содержанием валина, лейцина, изолейцина, гистидина, метионина, лизина, фенилаланина, триптофана. Бобовые, зерновые и крупы богаты на валин, лейцин, изолейцин, триптофан, метионин, треонин, метионин. Орехи и различные семена насытят организм треонином, изолейцином, лизином, аргинином и гистидином.

Ниже приведено содержание аминокислот в некоторых продуктах.

Наибольшее количество триптофана и метионина можно обнаружить в твёрдом сыре, лизина - в мясе кролика, валина, лейцина, изолейцина, треонина и фенилаланина - в сое. При составлении рациона, основанного на поддержании АМК в норме, стоит обратить внимание на кальмаров и горох, а наиболее бедными в плане содержания пептидов можно назвать картофель и коровье молоко.

Нехватка аминокислот при вегетарианстве

То, что существуют такие аминокислоты, которые содержатся исключительно в продуктах животного происхождения, - миф. Более того, учёные выяснили, что белок растительного происхождения усваивается человеческим организмом лучше, чем животного. Однако при выборе вегетарианства как стиля жизни очень важно следить за рационом. Основная проблема такова, что в ста граммах мяса и в таком же количестве бобов содержится разное количество АМК в процентном соотношении. На первых порах необходимо вести учёт содержания аминокислот в потребляемой пище, затем уже это должно дойти до автоматизма.

Какое количество аминокислот нужно потреблять в день

В современном мире абсолютно во всех продуктах питания содержатся нужные для человека питательные вещества, поэтому не следует переживать: все 20 белковых аминокислот благополучно поступают с пищей, и этого количества хватает для человека, ведущего обычный образ жизни и хоть немного следящего за своим питанием.

Рацион спортсмена же необходимо насыщать белками, потому что без них просто невозможно построение мышечной массы. Физические упражнения ведут к колоссальному расходу запаса аминокислот, поэтому профессиональные бодибилдеры вынуждены принимать специальные добавки. При интенсивном построении мышечного рельефа количество белков может доходить до ста граммов белков в день, но такой рацион не подходит для ежедневного потребления. Любая добавка к пище подразумевает инструкцию с содержанием разных АМК в дозе, с которой перед применением препарата необходимо ознакомиться.

Влияние пептидов на качество жизни обычного человека

Потребность в белках присутствует не только у спортсменов. Например, белки эластин, кератин, коллаген влияют на внешний вид волос, кожи, ногтей, а также на гибкость и подвижность суставов. Ряд аминокислот влияет на в организме, сохраняя баланс жира на оптимальном уровне, предоставляют достаточное количество энергии для повседневной жизни. Ведь в процессе жизнедеятельности даже при самом пассивном образе жизни затрачивается энергия, хотя бы для осуществления дыхания. Вдобавок невозможна и когнитивная деятельность при нехватке определенных пептидов; поддержание психоэмоционального состояния осуществляется в том числе за счет АМК.

Аминокислоты и спорт

Диета профессиональных спортсменов предполагает идеально сбалансированные питание, которое помогает поддерживать мышцы в тонусе. Очень облегчают жизнь разработанные специально для тех спортсменов, которые работают на набор мышечной массы.

Как уже писалось ранее, аминокислоты - основной строительный материал белков, необходимых для роста мышц. Также они способны ускорять метаболизм и сжигать жир, что тоже важно для красивого мышечного рельефа. При усердных тренировках необходимо увеличивать потребление АМК ввиду того, что они увеличивают скорость наращивания мышц и уменьшают боли после тренировок.

20 аминокислот в составе белков могут потребляться как в составе аминокарбоновых комплексов, так и из пищи. Если выбирать сбалансированное питание, то нужно учитывать абсолютно все граммовки, что трудно реализовать при большой загруженности дня.

Что происходит с организмом человека при нехватке или переизбытке аминокислот

Основными симптомами нехватки аминокислот считаются: плохое самочувствие, отсутствие аппетита, ломкость ногтей, повышенная утомляемость. Даже при нехватке одной АМК возникает огромное количество неприятных побочных эффектов, которые значительно ухудшают самочувствие и продуктивность.

Перенасыщение аминокислотами может повлечь за собой нарушения в работе сердечно-сосудистой и нервной систем, что, в свою очередь, не менее опасно. В свой черед могут появиться симптомы, схожие с пищевым отравлением, что тоже не влечет за собой ничего приятного.

Во всем надо знать меру, поэтому соблюдение здорового образа жизни не должно приводить к переизбытку тех или иных «полезных» веществ в организме. Как писал классик, «лучшее - враг хорошего».

В статье мы рассмотрели формулы и названия всех 20 аминокислот, таблица содержания основных АМК в продуктах приведена выше.

Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты .

В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 ( α-аминокислоты) из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов. Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче нервных импульсов.

Аминокислоты - органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH 2 .

Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.

КЛАССИФИКАЦИЯ

Аминокислоты классифицируют по структурным признакам.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.

3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.

Примером ароматической аминокислоты может служить пара -аминобензойная кислота:

Примером гетероциклической аминокислоты может служить триптофан –незаменимая α- аминокислота

НОМЕНКЛАТУРА

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.

Например:

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

Пример:

Для α-аминокислот R-CH(NH 2)COOH


Которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Таблица.

Аминокислота

Сокращённое

обозначение

Строение радикала (R)

Глицин

Gly (Гли)

H -

Аланин

Ala (Ала)

CH 3 -

Валин

Val (Вал)

(CH 3) 2 CH -

Лейцин

Leu (Лей)

(CH 3) 2 CH – CH 2 -

Серин

Ser (Сер)

OH- CH 2 -

Тирозин

Tyr (Тир)

HO – C 6 H 4 – CH 2 -

Аспарагиновая кислота

Asp (Асп)

HOOC – CH 2 -

Глутаминовая кислота

Glu (Глу)

HOOC – CH 2 – CH 2 -

Цистеин

Cys (Цис)

HS – CH 2 -

Аспарагин

Asn (Асн)

O = C – CH 2 –

NH 2

Лизин

Lys (Лиз)

NH 2 – CH 2 - CH 2 – CH 2 -

Фенилаланин

Phen (Фен)

C 6 H 5 – CH 2 -

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино- , три группы NH 2 – триамино- и т.д.

Пример:

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота :

ИЗОМЕРИЯ

1. Изомерия углеродного скелета

2. Изомерия положения функциональных групп

3. Оптическая изомерия

α-аминокислоты, кроме глицина NН 2 -CH 2 -COOH.

ФИЗИЧЕСКИЕ СВОЙСТВА

Аминокислоты представляют собой кристаллические вещества с высокими (выше 250°С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.

ПОЛУЧЕНИЕ

3. Микробиологический синтез. Известны микроорганизмы, которые в процессе жизнедеятельности продуцируют α - аминокислоты белков.

ХИМИЧЕСКИЕ СВОЙСТВА

Аминокислоты амфотерные органические соединения, для них характерны кислотно-основные свойства.

I . Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:

Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.

ПРИМЕНЕНИЕ

1) аминокислоты широко распространены в природе;

2) молекулы аминокислот – это те кирпичики, из которых построены все растительные и животные белки; аминокислоты, необходимые для построения белков организма, человек и животные получают в составе белков пищи;

3) аминокислоты прописываются при сильном истощении, после тяжелых операций;

4) их используют для питания больных;

5) аминокислоты необходимы в качестве лечебного средства при некоторых болезнях (например, глутаминовая кислота используется при нервных заболеваниях, гистидин – при язве желудка);

6) некоторые аминокислоты применяются в сельском хозяйстве для подкормки животных, что положительно влияет на их рост;

7) имеют техническое значение: аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна – капрон и энант.

О РОЛИ АМИНОКИСЛОТ

Нахождение в природе и биологическая роль аминокислот

Нахождение в природе и би...гическая роль аминокислот


Химическое поведение аминокислот определяется двумя функциональными группами -NН 2 и -СООН. Аминокислотам характерны реакции по аминогруппе, карбоксильной группе и по радикальной части, при этом в зависимости от реагента взаимодействие веществ может идти по одному или нескольким реакционным центрам.

Амфотерный характер аминокислот. Имея в молекуле одновременно кислотную и основную группу, аминокислоты в водных растворах ведут себя как типичные амфотерные соединения. В кислых растворах они проявляют основные свойства, реагируя как основания, в щелочных - как кислоты, образуя соответственно две группы солей:

Благодаря своей амфотерности в живом организме, аминокислоты играют роль буферных веществ, поддерживающих определенную концентрацию водородных ионов. Буферные растворы, полученные при взаимодействии аминокислот с сильными основаниями, широко применяются в биоорганической и химической практике. Соли аминокислот с минеральными кислотами лучше растворимы в воде, чем свободные аминокислоты. Соли с органическими кислотами труднорастворимые в воде и используются для идентификации и разделения аминокислот.

Реакции, обусловленные аминогруппой. С участием аминогруппы аминокислоты образуют аммониевые соли с кислотами, ацилируются, алкилируются, реагируют с азотистой кислотой и альдегидами в соответствии со следующей схемой:

Алкилирование проводится при участии R-На1 или Аr-Наl:

В процессе реакции ацилирования используются хлорангидриды или ангидриды кислот (ацетилхлорид, уксусный ангидрид, бензилоксикарбонилхлорид):

Реакции ацилирования и алкилировнаия применяется для защиты NН 2 -группы аминокислот в процессе синтеза пептидов.

Реакции, обусловленные карбоксильной группой . При участиикарбоксильной группы аминокислоты образуют cоли, сложные эфиры, амиды, хлорангидриды в соответствии со схемой, представленной ниже:

Если при a-углеродном атоме в углеводородном радикале имеется электроноакцепторный заместитель (-NO 2 , -СС1 3 , -СООН, -COR и т.д.), поляризующий связь С®СООН, то у карбоновых кислот легко протекают реакции декарбоксилирования . Декарбоксилирование a-аминокислот, содержащих в качестве заместителя + NH 3 -группу, приводит к образованию биогенных аминов. В живом орга-низме данный процесс протекает под действием фермента декарбоксилазы и витамина пиридоксальфосфата.

В лабораторных условиях реакцию осуществляется при на-гревании a-аминокислоты в присутствии поглотителей СО 2 , например, Ва(ОН) 2 .

При декарбоксилировании b-фенил-a-аланина, лизина, серина и гистидина образуются, соответственно, фенамин, 1,5-диаминопентан (кадаверин), 2-аминоэтанол-1 (коламин) и триптамин.


Реакции аминокислот с участием боковой группы. При нитровании аминокислоты тирозин азотной кислотой происходитобразованиединитропроизводного соединения, окрашенного в оранжевый цвет (ксантопротеиновая проба):

Окислительно-восстановительные переходы имеют место в системе цистеин - цистин:

2НS CH 2 CH(NH 2)COOH ¾¾¾® HOOCCH(NH 2)CH 2 S-S CH 2 CH(NH 2)COOH

HOOCCH(NH 2)CH 2 S-S CH 2 CH(NH 2)COOH ¾¾¾® 2 НS CH 2 CH(NH 2)COOH

В некоторых реакциях аминокислоты реагируют по обеим функциональным группам одновременно.

Образование комплексов с металлами. Почти все a-аминокислоты образуют комплексы с ионами двухвалентных металлов. Наиболее устойчивыми являются комплексные внутренние соли меди (хелатные соединения), образующиеся в результате взаимодействия с гидроксидом меди (II) и окрашенные в синий цвет:

Действие азотистой кислоты на алифатические аминокислоты приводит кобразованию гидроксикислот, на ароматические - диазосоединений.

Образование гидроксикислот:

Реакция диазотирования:

(диазосоединение)

1. с выделением молекулярного азота N 2:

2. без выделения молекулярного азота N 2:

Хромофорная группа азобензола -N=N в азосоединениях обуславливает желтую, желтую, оранжевую или другого цвета окраску веществ при поглощении в видимой области света (400-800 нм). Ауксохромная группа

СООН изменяет и усиливает окраску за счет π, π - сопряжения с π - электронной системой основной группы хромофора.

Отношение аминокислот к нагреванию. При нагревании аминокислоты разлагаются с образованием различных продуктов в зависимости от их типа. При нагревании a-аминокислот в результате межмолекулярной дегидратации образуются циклические амиды - дикетопиперазины:

валин (Val) диизопропильное производное

дикетопиперазина

При нагревании b-аминокислот от них отщепляется аммиак с образованием α, β-непредельных кислот с сопряженной системой двойных связей:

β-аминовалериановая кислота пентен-2-овая кислота

(3-аминопентановая кислота)

Нагревание g- и d-аминокислот сопровождается внутримолекулярной дегидратацией и образованием внутренних циклических амидов - лактамов:

γ-аминоизовалериановая кислота лактам γ-аминоизовалериановой

(4-амино-3-метилбутановая кислота) кислоты

Аминокислоты, белки и пептиды являются примерами соединений, описанных далее. Многие биологически активные молекулы включают несколько химически различных функциональных групп, которые могут взаимодействовать между собой и с функциональными группа друг друга.

Аминокислоты.

Аминокислоты - органические бифункциональные соединения, в состав которых входит карбоксильная группа -СООН , а аминогруппа - NH 2 .

Разделяют α и β - аминокислоты:

В природе встречаются в основном α -кислоты. В состав белков входят 19 аминокислот и ода иминокислота (С 5 Н 9 NO 2 ):

Самая простая аминокислота - глицин. Остальные аминокислоты можно разделить на следующие основные группы:

1) гомологи глицина - аланин, валин, лейцин, изолейцин.

Получение аминокислот.

Химические свойства аминокислот.

Аминокислоты - это амфотерные соединения, т.к. содержат в своём составе 2 противоположные функциональные группы - аминогруппу и гидроксильную группу. Поэтому реагируют и с кислотами и с щелочами:

Кислотно-основные превращение можно представить в виде:

Органические (карбоновые) кислоты, содержащие, как правило, одну или две аминогруппы (NH2). В зависимости от положения аминогруппы в углеродной цепи по отношению к карбоксилу различают а, b , y и т. д. А. в природе широко распространены a А.,… … Биологический энциклопедический словарь

АМИНОКИСЛОТЫ, класс органических соединений, содержащих карбоксильные (COOH) и аминогруппы (NH2); обладают свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ всех организмов (исходные соединения при биосинтезе гормонов,… … Современная энциклопедия

Класс органических соединений, содержащих карбоксильные (COOH) и аминогруппы (NH2); обладают свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ всех организмов (исходное соединение при биосинтезе гормонов, витаминов,… … Большой Энциклопедический словарь

АМИНОКИСЛОТЫ, от, ед. аминокислота, ы, жен. (спец.). Класс органических соединений, обладающих свойствами и кислот, и оснований. | прил. аминокислотный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Орг. соединения с двойной функцией кислотной, обусловленной присутствием карбоксильной группы (см. Карбоксил), и основной, связанной с наличием аминогруппы (NH2) или (реже) иминогруппы (NH), входящей обычно в состав гетероцикла. Примеры … Геологическая энциклопедия

аминокислоты - органические соединения, содержащие одну или две аминогруппы; производные карбоновых кислот, у которых в радикале водород замещен на аминогруппу; структурные единицы белковой молекулы. белковые: аланин. аргинин. аспарагин. пролин. аспарагиновая… … Идеографический словарь русского языка

аминокислоты - – карбоновые кислоты, у которых, как минимум, один атом углерода углеводородной цепи замещен на аминогруппу … Краткий словарь биохимических терминов

АМИНОКИСЛОТЫ - АМИНОКИСЛОТЫ, органические кислоты (содержащие группу СООН), в к рых один или несколько атомов Н в алкогольном радикале замещены щелочными амино группа ми (NHa), вследствие чего А. принадлежат к г. н. амфотерным соединениям. В зависимо сти от… … Большая медицинская энциклопедия

Аминокислоты - * амінакіслоты * amino acids класс органических соединений, для которых характерны свойства как карбоновых кислот, так и аминов (табл.). Они различаются между собой по химической природе боковых цепей (групп). На основе полярности групп А. могут … Генетика. Энциклопедический словарь

АМИНОКИСЛОТЫ - класс органических соединений, молекулы которых содержат аминогруппы (NH2) и карбоксильные группы (СООН). А. широко распространены в природе, входят в состав белковых молекул. Все А. твёрдые кристаллические вещества, хорошо растворяются в воде… … Большая политехническая энциклопедия

Книги

  • , Орехов С.Н.. В учебном пособии представлены сведения о современных методах получения медицинских препаратов в условиях промышленного биофармацевтического производства. Наибольшее внимание уделено…
  • Фармацевтическая биотехнология. Руководство к практическим занятиям , С. Н. Орехов. В учебном пособии представлены сведения о современных методах получения медицинских препаратов в условиях промышленного биофармацевтического производства. Наибольшее внимание уделено…
В продолжение темы:
Организация ЕГЭ

(значительно увеличивает продолжительность загрузки)Всего страниц: 141 Размер файла: 975 Кб Страницы: «« 132 Ветвью Традици [Дюн-Хор]. Когда я, опираясь лишь на общий совет...

Новые статьи
/
Популярные