Вращательное движение по окружности. Движение тела по окружности с постоянной по модулю скоростью

Движение по окружности – частный случай криволинейного движения. Скорость тела в любой точке криволинейной траектории направлена по касательной к ней (рис.2.1). Скорость как вектор при этом может изменяться и по модулю (величине) и по направлению. Если модуль скоростиостается неизменным, то говорят оравномерном криволинейном движении.

Пусть тело движется по окружности с постоянной по величине скоростью из точки 1 в точку 2.

При этом тело пройдет путь, равный длине дуги ℓ 12 между точками 1 и 2 за времяt. За это же времяtрадиус- векторR, проведенный из центра окружности 0 к точке, повернется на угол Δφ.

Вектор скорости в точке 2 отличается от вектора скорости в точке 1 по направлению на величину ΔV:

;

Для характеристики изменения вектора скорости на величину δv введем ускорение:

(2.4)

Вектор в любой точке траектории направлен по радиусуRкцентру окружности перпендикулярно к вектору скоростиV 2 . Поэтому ускорение, характеризующее при криволинейном движении изменение скоростипо направлению, называютцентростремительным или нормальным . Таким образом, движение точки по окружности с постоянной по модулю скоростью являетсяускоренным .

Если скорость изменяется не только по направлению, но и по модулю (величине), то кроме нормального ускорениявводят еще икасательное (тангенциальное) ускорение, которое характеризует изменение скорости по величине:

или

Направлен вектор по касательной в любой точке траектории (т.е. совпадает с направлением вектора). Угол между векторамииравен 90 0 .

Полное ускорение точки, движущейся по криволинейной траектории, определяется как векторная сумма (рис.2.1.).

.

Модуль вектора
.

Угловая скорость и угловое ускорение

При движении материальной точки по окружности радиус-векторR, проведенный из центра окружности О к точке, поворачивается на угол Δφ (рис.2.1). Для характеристики вращения вводятся понятия угловой скорости ω и углового ускорения ε.

Угол φ можно измерять в радианах. 1 рад равен углу, который опирается на дугу ℓ, равную радиусуRокружности, т.е.

или 12 = R φ (2.5.)

Продифференцируем уравнение (2.5.)

(2.6.)

Величина dℓ/dt=V мгн. Величину ω =dφ/dtназываютугловой скоростью (измеряется в рад/с). Получим связь между линейной и угловой скоростями:

Величина ω векторная. Направление вектораопределяетсяправилом винта (буравчика) : оно совпадает с направлением перемещения винта, ориентированного вдоль оси вращения точки или тела и вращаемого в направлении поворота тела (рис.2.2), т.е.
.

Угловым ускорением называется векторная величина производная от угловой скорости (мгновенное угловое ускорение)

, (2.8.)

Вектор совпадает с осью вращения и направлен в туже сторону, что и вектор, если вращение ускоренное, и в противоположную, если вращение замедленное.

Число оборотов n тела в единицу времени называют частотой вращения .

Время Т одного полного оборота тела называют периодом вращения . При этом R опишет угол Δφ=2π радиан

С учетом сказанного

, (2.9)

Уравнение (2.8) можно записать следующим образом:

(2.10)

Тогда тангенциальная составляющая ускорения

а  =R(2.11)

Нормальное ускорение а n можно выразить следующим образом:

с учетом (2.7) и (2.9)

(2.12)

Тогда полное ускорение .

Для вращательного движения с постоянным угловым ускорением можно записать уравнение кинематики по аналогии с уравнением (2.1) – (2.3) для поступательного движения:

,

.

Расстояние и время, которое уходит на преодоление этого расстояния, связывает физическое понятие - скорость. И у человека, как правило, не вызывает вопросов определение этой величины. Все понимают, что двигаться на автомобиле со скоростью 100 км/ч - значит за один час проехать 100 километров.

А как быть, если тело вращается? Например, обычный бытовой вентилятор делает с десяток оборотов в секунду. И в то же время скорость вращения лопастей такова, что их запросто можно остановить рукой без вреда для себя. Земля вокруг своей звезды - Солнца - делает один оборот за целый год, а это более 30 миллионов секунд, но скорость её движения по околозвёздной орбите составляет около 30 километров за одну секунду!

Как же связать привычную скорость с быстротой вращения, как выглядит формула угловой скорости?

Понятие угловой скорости

Понятие угловой скорости используется в изучении законов вращения. Оно применяется ко всем вращающимся телам. Будь то вращение некоторой массы вокруг другой, как в случае с Землёй и Солнцем, или же вращение самого тела вокруг полярной оси (суточное вращение нашей планеты).

Отличие угловой скорости от линейной в том, что она фиксирует изменение угла, а не расстояния в единицу времени. В физике угловую скорость принято обозначать буквой греческого алфавита «омега» - ω.

Классическая формула угловой скорости вращения рассматривается так.

Представим, что вокруг некоторого центра А вращается физическое тело с постоянной скоростью. Его положение в пространстве относительно центра определяется углом φ. В некоторый момент времени t1 рассматриваемое тело находится в точке В. Угол отклонения тела от начального φ1.

Затем тело перемещается в точку С. Оно находится там в момент времени t2. Время, понадобившееся для данного перемещения:

Меняется и положение тела в пространстве. Теперь угол отклонения равен φ2. Изменение угла за период времени ∆t составило:

∆φ = φ2 - φ1.

Теперь формула угловой скорости формулируется следующим образом: угловая скорость определяется как отношение изменения угла ∆φ за время ∆t.

Единицы измерения угловой скорости

Скорость движения тела линейная измеряется в разных величинах. Движение автотранспорта по дорогам привычно указывают в километрах в час, морские суда делают узлы - морские мили в час. Если же рассматривать движение космических тел, то тут чаще всего фигурируют километры в секунду.

Угловая скорость в зависимости от величины и от предмета, который вращается, также измеряется в разных единицах.

Радианы в секунду (рад/с) - классическое мерило скорости в международной системе единиц (СИ). Показывают - на сколько радиан (в одном полном обороте 2 ∙ 3,14 радиан) успевает повернуться тело за одну секунду.

Обороты в минуту (об/мин) - самая распространённая единица для обозначения скоростей вращения в технике. Валы двигателей как электрических, так и автомобильных выдают именно (достаточно посмотреть на тахометр в своём автомобиле) обороты в минуту.

Обороты в секунду (об/с) - используется реже, прежде всего в образовательных целях.

Период обращения

Иногда для определения скорости вращения удобнее пользоваться другим понятием. Периодом обращения принято называть время, за которое некое тело делает оборот 360° (полный круг) вокруг центра вращения. Формула угловой скорости, выраженная через период обращения, принимает вид:

Выражать периодом обращения быстроту вращения тел оправдано в случаях, когда тело вращается относительно медленно. Вернёмся к рассмотрению движения нашей планеты вокруг светила.

Формула угловой скорости позволяет вычислить её, зная период обращения:

ω = 2П/31536000 = 0,000000199238499086111 рад/с.

Глядя на полученный результат, можно понять, почему, рассматривая вращение небесных тел, удобнее пользоваться именно периодом обращения. Человек видит перед собой понятные цифры и наглядно представляет себе их масштаб.

Связь угловой и линейной скоростей

В некоторых задачах должны быть определены линейная и угловая скорость. Формула трансформации проста: линейная скорость тела равняется произведению угловой скорости на радиус вращения. Как это показано на рисунке.

«Работает» выражение и в обратном порядке, с его помощью определяется и угловая скорость. Формула через скорость линейную получается путём несложных арифметических манипуляций.

Среди различных видов криволинейного движения особый интерес представляет равномерное движение тела по окружности . Это самый простой вид криволинейного движения. Вместе с тем любое сложное криволинейное движение тела на достаточно малом участке его траектории можно приближенно рассматривать как равномерное движение по окружности .

Такое движение совершают точки вращающихся колес, роторов турбин, искуственные спутники, вращающиеся по орбитам и т. д. При равномерном движении по окружности численное значение скорости остается постоянным. Однако направление скорости при таком движении непрерывно изменяется.

Скорость движения тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке. В этом можно убедиться, наблюдая за работой точила, имеющего форму диска: прижав к вращающемуся камню конец стального прута можно увидеть отрывающиеся от камня раскаленные частицы. Эти частицы летят с той скоростью, которой они обладали в момент отрыва от камня. Направление вылета искр всегда совпадает с касательной к окружности в той точке, где пруток касается камня. По касательной к окружности движутся также брызги от колес буксующего автомобиля.

Таким образом, мгновенная скорость тела в разных точках криволинейной траектории имеет различные направления, тогда как модуль скорости может быть или всюду одинаковым, или изменяться от точки к точке. Но даже если модуль скорости не изменяется, ее все равно нельзя считать постоянной. Ведь скорость - величина векторная, а для векторных величин модуль и направление одинаково важны. Поэтому криволинейное движение всегда ускоренное , даже если модуль скорости постоянен.

При криволинейном движении могут изменяться модуль скорости и ее направление. Криволинейное движение, при котором модуль скорости остается постоянным, называют равномерным криволинейным движением . Ускорение при таком движении связано только с изменением направления вектора скорости.

И модуль, и направление ускорения должны зависеть от формы кривлинейной траектории. Однако нет необходимости рассматривать каждую из ее бесчисленных форм. Представив каждый участок как отдельную окружность с некоторым радиусом, задача нахождения ускорения при криволинейном равномерном движении сведется к отысканию ускорения при равномерном движении тела по окружности.

Равномерное движение по окружности характеризуется периодом и частотой обращения.

Время, за которое тело делает один оборот, называют периодом обращения .

При равномерном движении по окружности период обращения определяется делением пройденного пути, т. е. длины окружности на скорость движения:

Величина, обратная периоду, называется частотой обращения , обозначается буквой ν . Число оборотов в единицу времени ν называют частотой обращения :

Из-за непрерывного изменения направления скорости, движущееся по окружности тело имеет ускорение, которое характеризует быстроту изменения ее направления, численное значение скорости в данном случае не меняется.

При равномерном движении тела по окружности ускорение в любой ее точке всегда направлено перпендикулярно скорости движения по радиусу окружности к ее центру и называется центростремительным ускорением .

Чтобы найти его значение, рассмотрим отношение изменения вектора скорости к интервалу времени , за который это изменение произошло. Поскольку угол очень мал, то мы имеем.

Равномерное движение по окружности – это простейший пример . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение () a n или а ЦС. В каждой точке вектор центростремительного ускорения направлен к центру окружности по радиусу.

Модуль центростремительного ускорения равен

a ЦС =v 2 / R

Где v – линейная скорость, R – радиус окружности

Рис. 1.22. Движение тела по окружности.

Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

1 радиан= l / R

Так как длина окружности равна

l = 2πR

360 о = 2πR / R = 2π рад.

Следовательно

1 рад. = 57,2958 о = 57 о 18’

Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

ω = φ / t

Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

v= l / t

Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

l = Rφ

где R – радиус окружности.

Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

v = l / t = Rφ / t = Rω или v = Rω

Рис. 1.23. Радиан.

Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности.Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

n = 1 / T

За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

T = 2π / ω

То есть угловая скорость равна

ω = 2π / T = 2πn

Центростремительное ускорение можно выразить через период Т и частоту обращения n:

a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2

На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

Рис. 6. Равномерное движение по окружности

То есть модуль мгновенной скорости не меняется:

Такую скорость называют линейной .

Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

Рис. 7. Векторы скорости

Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

Следовательно, любое криволинейное движение является ускоренным .

Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

Следовательно, оба угла при основании этого треугольника неограниченно близки к :

Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

Подставим полученное выражение для AB в формулу подобия треугольников:

Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

Формула для вычисления периода:

где - полное время вращения; - число оборотов.

2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

Формула для нахождения частоты:

где - полное время вращения; - число оборотов

Частота и период - обратно пропорциональные величины:

3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

Формула для нахождения угловой скорости:

где - изменение угла; - время, за которое произошел поворот на угол .

В продолжение темы:
Организация ЕГЭ

(значительно увеличивает продолжительность загрузки)Всего страниц: 141 Размер файла: 975 Кб Страницы: «« 132 Ветвью Традици [Дюн-Хор]. Когда я, опираясь лишь на общий совет...

Новые статьи
/
Популярные