С чем реагируют арены. Ароматические углеводороды

АРЕНЫ (ароматические углеводороды)

Арены или ароматические углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Почему "Ароматические"? Т.к. некоторые из ряда веществ имеют приятный запах. Однако в настоящее время в понятие "ароматичность" вкладывается совершенно иной смысл.

Ароматичность молекулы означает ее повышенную устойчивость, обусловленную делокализацией π-электронов в циклической системе.

Критерии ароматичности аренов:

  1. Атомы углерода в sp 2 -гибридизованном состоянии образуют цикл.
  2. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).
  3. Замкнутая система сопряженных связей содержит

    4n+2 π-электронов (n – целое число).


Этим критериям полностью соответствует молекула бензола С 6 Н 6 .

Понятие “бензольное кольцо ” требует расшифровки. Для этого необходимо рассмотреть строение молекулы бензола.

В се связи между атомами углерода в бензоле одинаковые (нет как таковых двойных и одинарных) и имеют длину 0,139нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154нм) и длиной двойной связи в алкенах (0,133 им).

Равноценность связей принято изображать кружком внутри цикла

Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения — количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола.

Общая фоормула: C n H 2n-6 (n ≥ 6)

Гомологический ряд:

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R):

орто - (о -) заместители у соседних атомов углерода кольца, т.е. 1,2-;
мета - (м -) заместители через один атом углерода (1,3-);
пара - (п -) заместители на противоположных сторонах кольца (1,4-).

арил

C 6 H 5 - (фенил ) и C 6 H Ароматические одновалентные радикалы имеют общее название "арил ". Из них наиболее распространены в номенклатуре органических соединений два:

C 6 H 5 - (фенил ) и C 6 H 5 CH 2 - (бензил ). 5 CH 2 - (бензил ).

Изомерия:

структурная:

1) положения заместителей для ди -, три - и тетра -замещенных бензолов (например, о -, м - и п -ксилолы);

2) углеродного скелета в боковой цепи, содержащей не менее 3-х атомов углерода:

3) изомерия заместителей R, начиная с R = С 2 Н 5 .

Химические свойства:

Для аренов более характерны реакции, идущие с сохранением ароматической системы , а именно, реакции замещения атомов водорода, связанных с циклом.

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированныхазотной и серной кислот):

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование ) происходит под действием алкилгалогенидов или алкенов в присутствии катализаторов AlCl 3 , AlBr 3 , FeCl 3 .



Замещение в алкилбензолах:

Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом.

Например, при нитровании толуола С 6 Н 5 CH 3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола:

и облегчает замещение именно в этих положениях.

С другой стороны, под влиянием бензольного кольца метильная группа СH 3 в толуоле становится более активной в реакциях окисления и радикального замещения по сравнению с метаном СH 4 .

Толуол, в отличие от метана, окисляется в мягких условиях (обесцвечивает подкисленный раствор KMnO 4 при нагревании):

Легче, чем в алканах, протекают реакции радикального замещения в боковой цепи алкилбензолов:

Это объясняется тем, что на лимитирующей стадии легко (при невысокой энергии активации) образуются устойчивые промежуточные радикалы. Например, в случае толуола образуется радикал бензил Ċ H 2 -C 6 H 5 . Он более стабилен, чем алкильные свободные радикалы (Ċ Н 3 , Ċ H 2 R), т.к. его неспаренный электрон делокализован за счет взаимодействия с π-электронной системой бензольного кольца:



Правила ориентации

  1. Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т.е. оказывают ориентирующее действие.
  2. По своему направляющему действию все заместители делятся на две группы: ориентанты первого рода и ориентанты второго рода .

    Ориентанты 1-го рода (орто-пара -ориентанты) направляют последующее замещение преимущественно в орто - и пара -положения.

    К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках):

R (+I ); - OH (+M,-I ); - OR (+M,-I ); - NH 2 (+M,-I ); - NR 2 (+M,-I ) +M-эффект в этих группах сильнее, чем -I-эффект.

Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто - и пара -положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов.

Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства:

-F (+M<–I ), -Cl (+M<–I ), -Br (+M<–I ).

Являясь орто-пара -ориентантами, они замедляют электрофильное замещение. Причина - сильный –I -эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета -ориентанты) направляют последующее замещение преимущественно в мета -положение.
К ним относятся электроноакцепторные группы:

-NO 2 (–M, –I ); -COOH (–M, –I ); -CH=O (–M, –I ); -SO 3 H (–I ); -NH 3 + (–I ); -CCl 3 (–I ).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто - и пара -положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета -положении, где электронная плотность несколько выше.
Пример:

Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду:

толуол C 6 H 5 CH В отличие от бензола его гомологи окисляются довольно легко.

1. Классификация ароматических углеводородов.

2. Гомологический ряд моноциклических аренов, номенклатура, получение.

3. Изомерия, строение бензола и его гомологов.

4. Свойства аренов.

Аренами называют богатые углеродом циклические углеводороды, которые содержат в молекуле бензольное ядро и обладают особыми физическими и химическими свойствами. Арены по числу бензольных колец в молекуле и способа соединения циклов подразделяют на моноциклические (бензол и его гомологи) и полициклические (с конденсированными и изолированными циклами) соединения.

Арены бензольного ряда можно рассматривать как продукты замещения атомов водорода в молекуле бензола на алкильные радикалы. Общая формула таких аренов СnH 2 n- 6. В названии монозамещенных аренов указывают название радикала и цикла (бензол):

бензол метилбензол (толуол) этилбензол.

В более замещенных аренах положение радикалов указывают наименьшими цифрами, в дизамещенных аренах положение радикалов называют: 1,2 - орто (o -)-, 1,3 - мета (м -)- и 1,4 - пара (п -)-:

1,3-диметилбензол 1,2-метилэтилбензол

м -диметилбензол (м -ксилол) о -метилэтилбензол (о -ксилол)

Для аренов широко распространены тривиальные названия (некоторые названия указаны в скобках).

Нахождение в природе.

Ароматические углеводороды встречаются в растительных смолах и бальзамах. Фенантрен в частично или полностью гидрированном виде содержится в структурах многих природных соединений, например стероидов, алкалоидов.

Получение аренов:

1. сухая перегонка каменного угля;

2. дегидрирование циклоалканов

3. дегидроциклизация алканов с 6 и более атомами углерода в составе

4. алкилирование

Изомерия. Для гомологов бензола характерна структурная изомерия: различное строение углеродного скелета бокового радикала и различные состав и расположение радикалов в бензольном кольце. Например, изомеры ароматических углеводородов состава С 9 Н 12 (пропилбензол, изопропилбензол, о-метилэтилбензол и 1,2,4-триметилбензол):

Строение. Ароматические углеводороды имеют целый ряд особенностей в электронном строении молекул.

Структурную формулу бензола впервые предложил А. Кекуле. Это шестичленный цикл с чередующимися двойными и одинарными связями, при этом двойные связи перемещаются в структуре:

В обеих формулах углерод четырехвалентен, все атомы углерода равноценны и дизамещенные бензола существуют в виде трех изомеров (орто -, мета -, пара- ). Однако такая структура бензола противоречила его свойствам: бензол не вступал в характерные для непредельных углеводородов реакции присоединения (например, брома) и окисления (например, с перманганатом калия), для него и его гомологов основной тип химического превращения - реакции замещения.

Современный подход к описанию электронного строения бензола разрешает это противоречие следующим образом. Атомы углерода в молекуле бензола находятся в sр 2 -гибридизации. Каждый из атомов углерода образует три ковалентные σ-связи - 2 связи с соседними атомами углерода (sр 2 -sр 2 -перекрывание орбиталей) и одну с атомом водорода (sр 2 -s- перекрывание орбиталей). Негибридизованные р-орбитали за счет бокового перекрывания образуют π-электронную сопряженную систему (π,π-сопряжение), содержащую шесть электронов. Бензол представляет собой плоский правильный шестиугольник с длиной связи углерод-углерод 0,14нм, связи углерод-водород 0,11нм, валентными углами 120 0:

Молекула бензола стабильнее циклических соединений с изолированными двойными связями, поэтому бензол и его гомологи склонны к реакциям замещения (бензольное кольцо сохраняется), а не присоединения и окисления.

Сходство в строении и свойствах (ароматичность) с бензолом проявляют и другие циклические соединения. Критерии ароматичности (Э. Хюккель, 1931г.):

а) плоская циклическая структура, т.е. атомы, образующие цикл, находятся в sр 2 -гибридизации; б) сопряженная электронная система; в) число электронов (N) в кольце равно 4n+2, где n - любое целочисленное значение - 0,1,2,3 и т.д.

Критерии ароматичности применимы как к нейтральным, так и заряженным циклическим сопряженным соединениям, поэтому ароматическими соединениями будут, например:

фуран катион циклопропенила.

Для бензола и других ароматических соединений наиболее характерны реакции замещения атомов водорода при углеродных атомах в цикле и менее характерны реакции присоединения по π-связи в цикле.

Физические свойства.

Бензол и его гомологи являются бесцветными жидкостями и кристаллическими веществами со своеобразным запахом. Они легче воды и плохо в ней растворяются. Бензол неполярное соединение(μ=0), алкилбензолы -

полярные соединения(μ≠0).

Химические свойства.

Электрофильное замещение. Наиболее характерным превращением для аренов является электрофильное замещение - S Е. Реакция протекает в две стадии с образованием промежуточного σ-комплекса:

Условиях реакции: температура 60-80 0 С, катализаторы - кислоты Льюса или минеральные кислоты.

Типичные S Е - реакции:

а) галогенирование (Cl 2 , Br 2):

б) нитрование:

в ) сульфирование (H 2 SO 4 , SO 3 , олеум):

г) алкилирование по Фриделю-Крафтсу (1877г.) (RНal, ROH, алкены):

д) алкилирование по Фриделю-Крафтсу (галогенангидриды, ангидриды карбоновых кислот):

У гомологов бензола в результате влияния бокового радикала (+I-эффект, электронодонорная группа) π-электронная плотность бензольного кольца распределена неравномерно, увеличиваясь в 2,4,6-положениях. Поэтому S Е -реакции протекают направлено (в 2,4,6- или о- и п- положения). Гомологи бензола по сравнению с бензолом в реакциях этого типа проявляют большую реакционная активность.

толуол п -хлортолуол о -хлортолуол

Реакции боковых радикалов в алкилбензолах (радикальное замещение - S R и окисление).

Реакции радикального замещения протекают, как и в предельных углеводородах, по цепному механизму и включают стадии инициирования, роста и обрыва цепи. Реакция хлорирования протекает ненаправлено, реакция бромирования региоселективна - замещение водорода происходит уα-углеродного атома.

В алкилбензолах боковая цепь окисляется перманганатом калия, бихроматом калия с образованием карбоновых кислот. Независимо от длины боковой цепи, окисляется атом углерода, связанный с бензольным ядром (α-углеродный или бензильный атом углерода), остальные атомы углерода окисляются до СО 2 или карбоновых кислот.

этилбензол бензойная кислота

п -метилэтилбензол терефталевая кислота

Реакции бензола с нарушением ароматической системы.

Ароматические углеводороды имеют прочный цикл, поэтому реакции с нарушением ароматической системы (окисление, радикальное присоединение) протекают в жестких условиях (высокие температуры, сильные окислители).

а) радикальное присоединение:

1. гидрирование

толуол циклогексан

2. хлорирование

бензол 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Продукт этой реакции представляет смесь пространственных изомеров.

Ориентация электрофильного замещения в ароматических соединениях. Заместители в бензольном кольце по своему ориентирующему влиянию делятся на два типа: орто -, пара -ориентанты (заместители 1 рода) и мета -ориентанты (заместители 2 рода).

Заместители 1 рода - это электронодонорные группы, которые повышают электронную плотность кольца, увеличивают скорость реакции электрофильного замещения и активируют бензольное кольцо в этих реакциях:

D(+I-эффект): - R, -СН 2 ОН, -СН 2 NН 2 и т.д.

D(-I,+М-эффекты): -NH 2 ,-OH, -OR, -NR 2 , -SH и т.д.

Заместители 2 рода – электроноакцепторные группы, которые понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях:

А (-I-эффект): -SO 3 H, -CF 3 , -CСl 3 и т.д.

А (-I, -М -эффект): -НС=О, -СООН, -NO 2 и т. д.

Атомы галогенов занимают промежуточное положение - они понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях, однако это о -,п -ориентанты.

Если в бензольном кольце находится два заместителя, то их ориентирующее действие может совпадать (согласованная ориентация ) или не совпадать (несогласованная ориентация ). В реакциях электрофильного замещения соединения с согласованной ориентацией образуют меньшее количество изомеров, во втором случае образуется смесь из большего числа изомеров. Например:

п - гидроксибензойная кислота м - гидроксибензойная кислота

(согласованная ориентация) (несогласованная ориентация)

Полициклические конденсированные ароматические углеводороды (нафталин, антрацен, фенантрен и т.д.), в основном, по свойствам похожи на бензол, но вместе с тем имеют некоторые отличия.

Применение:

1. ароматические углеводороды - сырье для синтеза красителей, взрывчатых веществ, лекарственных препаратов, полимеров, поверхностно-активных веществ, карбоновых кислот, аминов;

2. жидкие ароматические углеводороды хорошие растворители органических соединений;

3. арены - добавки для получения высокооктановых бензинов.

Знаете ли вы, что -В 1649 году немецкий химик Иоганн Глаубер впервые получил бензол.

В 1825 году М. Фарадей выделил из светильного газа углеводород и установил его состав - С 6 Н 6 .

В 1830 году Юстус Либих назвал полученное соединение бензолом (от араб. Вen-аромат + zoa-сок + лат. ol-масло).

В1837 году Огюстом Лораном назван радикал бензола С 6 Н 5 - фенил (от греч phenix-освещать).

В 1865 году немецкий химик-органик Фридрих Август Кекуле предложил формулу бензола с чередующимися двойными и одинарными связями в шестичленном цикле.

В 1865-70-х годах В. Кернер предложил использовать приставки для обозначения взаимного расположения двух заместителей: 1,2 положение - орто- (orthos - прямой);1,3- мета (meta - после) и 1,4- пара (para - напротив).

Ароматические углеводороды - высокотоксичные вещества, вызывают отравление и поражение некоторых органов, например почек, печени.

Некоторые ароматические углеводороды - канцерогены (вещества, вызывающие раковые заболевания), например бензол (вызывает лейкемию), один из сильнейших - бензопирен (содержится в табачном дыме).

Химия — очень увлекательная наука. Она изучает все вещества, которые существуют в природе, а их огромное множество. Они разделяются на неорганические и органические. В этой статье мы рассмотрим ароматические углеводороды, которые относятся к последней группе.

Что это такое?

Это органические вещества, которые имеют в своем составе одно или несколько бензольных ядер — устойчивых структур из шести атомов углерода, соединенных в многоугольник. Данные химические соединения обладают специфическим запахом, что можно понять из их названия. Углеводороды этой группы относятся к циклическим, в отличие от алканов, алкинов и др.

Ароматические углеводороды. Бензол

Это самое простое химическое соедиение из данной группы веществ. В состав его молекул входят шесть атомов углерода и столько же гидрогена. Все остальные ароматические углеводороды являются производными бензола и могут быть получены с его использованием. Это вещество при нормальных условиях находится в жидком состоянии, оно бесцветное, обладает специфическим сладковатым запахом, в воде не растворяется. Закипать оно начинает при температуре +80 градусов по Цельсию, а замерзать — при +5.

Химические свойства бензола и других ароматических углеводородов

Первое, на что нужно обратить внимание, — галогенирование и нитрование.

Реакции замещения

Первая из них — галогенирование. В этом случае, чтобы химическое взаимодействие могло осуществиться, нужно использовать катализатор, а именно трихлорид железа. Таким образом, если добавить к бензолу (С 6 Н 6) хлор (Cl 2), то мы получим хлорбензол (С 6 Н 5 Cl) и хлороводород (HCl), который выделится в виде прозрачного газа с резким запахом. То есть вследствие этой реакции один атом водорода замещается атомом хлора. То же самое может произойти и при добавлении к бензолу других галогенов (йода, брома и т. д.). Вторая реакция замещения — нитрование — проходит по похожему принципу. Здесь в роли катализатора выступает концентрированный раствор серной кислоты. Для проведения такого рода химической реакции к бензолу необходимо добавить нитратную кислоту (HNO 3), тоже концентрированную, в результате чего образуются нитробензол (C 6 H 5 NO 2) и вода. В этом случае атом гидрогена замещается группой из атома нитрогена и двух оксигена.

Реакции присоединения

Это второй тип химических взаимодействий, в которые способны вступать ароматические углеводороды. Они также существуют двух видов: галогенирование и гидрирование. Первая происходит только при наличии солнечной энергии, которая выступает в роли катализатора. Для проведения этой реакции к бензолу также необходимо добавить хлор, но в большем количестве, чем для замещения. На одну молекулу бензола должно приходиться три хлора. В результате получим гексахлорциклогексан (С 6 Н 6 Cl 6), то есть к имеющимся атомам присоединится еще и шесть хлора.

Гидрирование происходит только в присутствии никеля. Для этого необходимо смешать бензол и гидроген (Н 2). Пропорции те же, что и в предыдущей реакции. Вследствие этого образуется циклогексан (С 6 Н 12). Все остальные ароматические углеводороды также могут вступать в такого типа реакции. Они происходят по такому же принципу, как и в случае с бензолом, только с образованием уже более сложных веществ.

Получение химических веществ этой группы

Начнем все так же с бензола. Его можно получить с помощью такого реагента, как ацетилен (С 2 Н 2). Из трех молекул данного вещества под воздействием высокой температуры и катализатора образуется одна молекула нужного химического соединения.

Также бензол и некоторые другие ароматические углеводороды можно добыть из каменноугольной смолы, которая образуется во время производства металлургического кокса. К получаемым таким способом можно отнести толуол, о-ксилол, м-ксилол, фенантрен, нафталин, антрацен, флуорен, хризен, дифенил и другие. Кроме того, вещества этой группы часто добывают из продуктов переработки нефти.

Как выглядят разнообразные химические соединения этого класса?

Стирол представляет собой бесцветную жидкость с приятным запахом, малорастворимую в воде, температура кипения составляет +145 градусов по Цельсию. Нафталин — кристаллическое вещество, также мало растворяется в воде, плавится при температуре +80 градусов, а закипает при +217. Антрацен в нормальных условиях также представлен в виде кристаллов, однако уже не бесцветных, а имеющих желтую окраску. Это вещество не растворяется ни в воде, ни в органических растворителях. Температура плавления — +216 градусов по шкале Цельсия, кипения — +342. Фенантрен выглядит как блестящие кристалы, которые растворяются только в органических растворителях. Температура плавления — +101 градус, кипения — +340 градусов. Флуорен, как понятно из названия, способен к флуоресценции. Это, как и многие другие вещества данной группы, — бесцветные кристаллы, нерастворимые в воде. Температура плавления — +116, закипания — +294.

Применение ароматических углеводородов

Бензол используется при производстве красителей в качестве сырья. Также он применяется при получении взрывчатки, пестицидов, некоторых лекарств. Стирол используют в производстве полистирола (пенопласта) с помощью полимеризации исходного вещества. Последний широко применяют в строительстве: в качестве тепло- и звукоизолирующего, электроизоляционного материала. Нафталин, как и бензол, участвует в производстве пестицидов, красителей, лекарств. Кроме того, он используется в химической промышленности для получения многих органических соединений. Антрацен также применяют в изготовлении красителей. Флуорен играет роль стабилизатора полимеров. Фенантрен, как и предыдущее вещество и многие другие ароматические углеводороды, — один из компонентов красителей. Толуол широко применяют в химической промышленности для добывания органических веществ, а также для получения взрывчатки.

Характеристика и использование веществ, добываемых с помощью ароматических углеводородов

К таким в первую очередь можно отнести продукты рассмотренных химических реакций бензола. Хлорбензол, к примеру, является органическим растворителем, также используется в производстве фенола, пестицидов, органических веществ. Нитробензол является компонентом полировальных средств для металла, применяется при изготовлении некоторых краситлей и ароматизаторов, может играть роль растворителя и окислителя. Гексахлорциклогексан используется в качестве яда для борьбы с насекомыми-вредителями, а также в химической промышленности. Циклогексан применяют в производстве лакокрасочных изделий, при получении многих органических соединений, в фарамацевтической отрасли промышленности.

Заключение

Прочитав эту статью, можно сделать вывод, что все ароматические углеводороды имеют однотипную химическую структуру, что позволяет объединить их в один класс соединений. Кроме того, их физические и химические свойства также весьма похожи. Внешний вид, температуры кипения и плавления всех химических веществ данной группы не сильно отличаются. Свое применение многие ароматические углеводороды находят в одних и тех же отраслях промышленности. Вещества, которые можно получить вследствие реакций галогенирования, нитрования, гидрирования, также имеют схожие свойства и используются в похожих целях.

Арены (ароматические углеводороды) - соединения, в молекулах которых содержится одно или несколько бензольных колей - циклических групп атомов углерода со специфическим характером связей.

Бензол - молекулярная формула С 6 Н 6 . Впервые была предложена А. Кекуле:

Строение аренов.

Все 6 атомов углерода находятся в sp 2 -гибридизации . Каждый атом углерода образует 2 σ -связи с двумя соседними атомами углерода и одним атомом водорода, которые находятся в одной плоскости. Углы составляют 120°. Т.е. все атомы углерода лежат в одной плоскости и образуют шестигранник. У каждого атома есть негибридная р -обиталь, на которой находится неспаренный электрон. Эта орбиталь перпендикулярна плоскости, и поэтому π -электронное облако «размазано» по всем атомам углерода:

Все связи равноценны. Энергия сопряжения - количество энергии, которую надо затратить, чтобы разрушить ароматическую систему.

Именно это обуславливает специфические свойства бензола - проявление ароматичности. Это явление было открыто Хюккелем, и называется правилом Хюккеля.

Изомерия аренов.

Арены можно разделить на 2 группы:

  • производные бензола:

  • конденсированные арены:

Общая формула аренов - С n H 2 n -6 .

Для аренов характерна структурная изомерия, которая объясняется взаимным расположением заместителей в кольце. Если в кольце находится 2 заместителя, то они могут находиться в 3-х различных положениях - орто (о-), мета (м-), пара (п-):

Если от бензола «отобрать» один протон, то образуется радикал - C 6 H 5 , которое носит название арильного радикала. Простейшие:

Называют арены словом «бензол» с указанием заместителей в кольце и их положения:

Физические свойства аренов.

Первые члены ряда - жидкости без цвета с характерным запахом. Они хорошо растворяются в органических растворителях, но нерастворимы в воде. Бензол токсичен, но имеет приятный запах. Вызывает головную боль и головокружения, при вдыхании больших количеств паров можно потерять сознание. Раздражает слизистую оболочку и глаза.

Получение аренов.

1. Из алифатических углеводородов с помощью «ароматизации» предельных углеводородов, входящих в состав нефти. При пропускании над платиной или оксидом хрома наблюдается дигидроциклизация:

2. Дегидрирование циклоалканов:

3. Из ацетилена (тримеризация) при пропускании над раскаленным углем при 600°С:

4. Реакция Фриделя - Крафтса в присутствии хлорида алюминия :

5. Сплавление солей ароматических кислот с щелочью:

Химические свойства аренов.

Реакции замещения аренов.

Ядро аренов обладает подвижной π -системой, на которую действуют электрофильные реагенты. Для аренов характерно электрофильное замещение, которое можно представить так:

Электрофильная частица притягивается к π -системе кольца, затем образуется прочная связь между реагентом Х и одним из атомов углерода, при этом единство кольца нарушается. Для восстановления ароматичности выбрасывается протон, а 2 электрона С-Н переходят в π-систему кольца.

1. Галогенирование происходит в присутствии катализаторов - безводных хлоридов и бромидов алюминия , железа :

2. Нитрование аренов. Бензол очень медленно реагирует с концентрированной азотной кислотой при сильном нагревании. Но если добавить серную кислоту , то реакция протекает очень легко:

3. Сульфирование протекает под воздействием 100% - серной кислоты - олеума:

4. Алкилирование алкенами . В результате происходит удлинение цепи, реакция протекает в присутствии катализатора - хлорида алюминия.

ПОСОБИЕ-РЕПЕТИТОР ПО ХИМИИ.

Арены. Бензол .

Статья посвящена ароматическим углеводородам (аренам) и самому простому их представителю – бензолу. Материал содержит
теоретическую часть в объеме, необходимом для подготовки к сдаче ЕГЭ, тест и задачи. Приведены также ответы и,

к некоторым задачам, – решения.

И.В.ТРИГУБЧАК

Ароматические углеводороды (арены). Бензол

П л а н 1. Определение, общая форму ла гомологического ряда, строение молекулы (на примере бензола). 2. Физические свойства бензола. 3. Химические свойства бензола: а) реакции замещения (галоге нирование, нитрование, суль фирование, алкилирование); б) реакции присоединения (ги дрирование, хлорирование); в) реакции окисления (горе ние). 4. Получение бензола (в про мышленности – переработкой нефти и угля, дегидрированием циклогексана, ароматизацией гексана, тримеризацией ацетиле на; в лаборатории – сплавлением солей бензойной кислоты со ще лочами).

Арены – это углеводороды, молекулы которых содержат одно или несколько бензольных колец. Под бензольным кольцом под разумевается кольцевая система атомов углерода с делокализован ными π-электронами. В 1931 г. Э.Хюккель сформулировал пра вило, гласящее, что соединение должно проявлять ароматические свойства, если в его молекуле со держится плоское кольцо с (4n + 2) обобщенными электронами, где n может проявлять значения целых чисел от 1 и далее (правило Хюк келя). Согласно этому правилу системы, содержащие 6, 10, 14 и т.д. обобщенных электронов, явля ются ароматическими. Различают три группы аренов по количеству и взаимному расположению бен зольных колец.

Моноциклические арены.

Изобразите структурные фор мулы бензола, толуола, о-ксилола, кумола. Назовите эти вещества по систематической номенклатуре.

Полициклические арены с изолированными ядрами.

Изобразите структурные фор мулы дифенила, дифенилметана, стильбена.


Полициклические арены с конденсированными ядрами.

Изобразите структурные фор мулы нафталина, антрацена.


Общая формула моноциклических аренов ряда бензола – С6Н2n–6, где n ≥ 6. Простейший представитель – бензол (С6Н6). Предложенная в 1865 г. немецким химиком
Ф.А.Кекуле циклическая формула бензола с сопряженными связями (циклогексатриен-1,3,5) не объясняла многие свойства бензола.
Для бензола характерны реакции замещения, а не реакции присоединения, как для непредельных углеводородов. Реакции присоединения возможны, но протекают
они труднее, чем у алкенов.
Бензол не вступает в реакции, являющиеся качественными на непредельные углеводороды (с бромной водой и раствором перманганата калия).
Проведенные позже исследования показали, что все связи между атомами углерода в молекуле бензола имеют одинаковую длину – 0,140 нм (среднее значение между длиной простой связи С–С 0,154 нм и двойной связи С=С 0,134 нм). Угол между связями у каждого атома углерода равен 120 °. Молекула бензола представляет собой правильный плоский шестиугольник.
Современная теория строения молекулы бензола базируется на представлении о гибридизации орбиталей атома углерода. Согласно этой теории, атомы углерода в бензоле находятся в состоянии sp2-гибридизации. Каждый атом углерода образует три σ-связи (две с атомами углерода и одну – с атомом водорода). Все σ-связи находятся в одной плоскости. У каждого атома углерода остается еще по одному р-электрону, не участвующему в гибридизации. Негибридизированные р-орбитали атомов углерода находятся в плоскости, перпендикулярной плоскости σ-связей. Каждое р-облако перекрывается с двумя соседними р-облаками, в результате чего образуется единая сопряженная π-система. Единое π-электронное облако расположено над и под бензольным кольцом, причем р-электроны не связаны с каким-либо атомом углерода и могут перемещаться относительно них в том или ином направлении. Полная симметричность бензольного ядра, обусловленная сопряжением, придает ему особую устойчивость.
Таким образом, наряду с формулой Кекуле используется формула бензола, где обобщенное электронное облако изображают замкнутой линией внутри кольца.
Изобразите формулу Кекуле и формулу, показывающую сопряженную π-систему.


Радикал, образованный от бензола, имеет тривиальное название фенил.
Изобразите его структурную формулу.

Физические свойства

При обычных условиях бензол представляет собой бесцветную жидкость с температурой плавления 5,5 °С, температурой кипения 80 °С; имеет характерный запах; легче воды и с ней не смешивается; хороший органический растворитель; токсичен.

Химические свойства

Химические свойства бензола и его гомологов определяются спецификой ароматической связи. Наиболее характерными для аренов являются реакции замещения (для бензола они протекают тяжелее, чем для его гомологов).

Галогенирование.
Напишите реакцию хлорирования бензола.


Нитрование.
Напишите реакцию взаимодействия бензола с азотной кислотой.


Сульфирование.
Напишите реакцию взаимодействия бензола с серной кислотой.


Алкилирование (реакция Фри деля–Крафтса).

Напишите реак ции получения этилбензола при взаимодействии бензола с хлор этаном и с этиленом.


Cистема из 6 π-электронов является более устойчивой, чем 2π-электронная, поэтому реакции присоединения для аренов менее характерны, чем для алкенов; они возможны, но при более жестких условиях.

Гидрирование.

Напишите реакцию гидрирования бензола до циклогексана.


Присоединение хлора.

Напишите реакцию хлорирования бензола до гексахлорана.

Реакции окисления для бензола возможна только в виде горения, т.к. к действию окислителей бензольное кольцо устойчиво.
Напишите реакцию горения бензола. Объясните, почему ароматические углеводороды горят коптящим пламенем.


Получение аренов

В продолжение темы:
Организация ЕГЭ

(значительно увеличивает продолжительность загрузки)Всего страниц: 141 Размер файла: 975 Кб Страницы: «« 132 Ветвью Традици [Дюн-Хор]. Когда я, опираясь лишь на общий совет...

Новые статьи
/
Популярные